首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two novel three-dimensional (3D) extended vanadogermanate-based frameworks, [Co(pdn)(2)](3)[Co(2)(pdn)(4)][V(16)Ge(4)O(44)(OH)(2)(H(2)O)]·5H(2)O (1), [Co(2)(en)(3)][Co(en)(2)](2)[Co(en)(2)(H(2)O)][V(16)Ge(4)O(44)(OH)(2)(H(2)O)]·10.5H(2)O (2), (pdn = 1,2-propanediamine, en = ethylenediamine) have been synthesized under hydrothermal conditions via changing the organic amine. X-ray crystal structure analyses reveal that both frameworks are built of [V(16)Ge(4)O(44)(OH)(2)(H(2)O)](10-) anions and different Co-amine cations. They represent the first example of incorporating elemental Co into the extended vanadogermanate frameworks. Compound 1 shows a 3D framework with NaCl topology based on {V(16)Ge(4)} clusters as nodes, while compound 2 exhibits a 3D (4,6)-connected network with a Schl?fli symbol of (4(6)·6(7)·8(2))(2)(4(2)·6(4)), which is found for the first time in polyoxovanadate chemistry. The diverse types of metal-organoamine subunits play critical roles in the formation on the final structures. Furthermore, variable temperature susceptibility measurements on compounds 1 and 2 demonstrate the presence of anticipated rare ferrimagnetic behavior.  相似文献   

2.
Three novel extended vanadogermanates, {[(en)(2)Cd(2)Ge(8)V(12)O(40)(OH)(8)(H(2)O)][Cd(en)(2)](2)}·6H(2)O (1), {[Zn(2)(dap)(3)][Zn(dap)](2)Ge(6)V(15)O(48)(H(2)O)}[Zn(dap)(2)(H(2)O)](2)·3H(2)O (2), and {[Cd(3)(μ-dien)(2)(Hdien)(2)(H(2)O)(2)]Ge(4)V(16)O(42)(OH)(4)(H(2)O)}·2H(2)O (3; en=ethylenediamine, dap=1,2-diaminopropane, dien=diethylenetriamine), have been hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, powder XRD, thermogravimetric analysis, and single-crystal XRD. Their Ge-V-O cluster anions are derived from the V(18)O(42) cluster shell by replacing VO(5) square pyramids with Ge(2)O(7) groups. Compound 1 exhibits a 1D sinusoidal chain built up from rare inorganic-organic hybrid dicadmium-substituted vanadogermanate {[Cd(en)](2)V(12)O(40)(GeOH)(8)(H(2)O)} clusters and [Cd(en)(2)] complexes. Compound 2 is the first example of a 2D network based on linkage of the unusual {Ge(6)V(15)O(48)(H(2)O)} clusters and two types of Zn complex fragments. Compound 3 is an unprecedented 3D framework built by {Ge(4)V(16)O(42)(OH)(4)(H(2)O)} clusters and rare trinuclear bridging complex cations [Cd(3)(μ-dien)(2)(Hdien)(2)(H(2)O)(2)](8+). Magnetic measurements illustrate that both 1 and 2 have antiferromagnetic exchange interactions between metal centers, whereas 3 exhibits ferrimagnetic behavior, which is rare in polyoxovanadate complexes.  相似文献   

3.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

4.
Zhang JH  Kong F  Mao JG 《Inorganic chemistry》2011,50(7):3037-3043
Two new barium borogermanates with two types of novel structures, namely, Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) and Ba(3)Ge(2)B(6)O(16), have been synthesized by hydrothermal or high-temperature solid-state reactions. They represent the first examples of alkaline-earth borogermanates. Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) crystallized in a polar space group Cc. Its structure features a novel three-dimensional anionic framework composed of [B(7)O(16)(OH)(2)](13-) polyanions that are bridged by Ge atoms with one-dimensional (1D) 10-membered-ring (MR) tunnels along the b axis. The Ba(II) cations, hydroxide ions, and water molecules are located at the above tunnels. Ba(3)Ge(2)B(6)O(16) crystallizes in centrosymmetric space group P1. Its structure exhibits a thick layer composed of circular B(6)O(16) units connected by GeO(4) tetrahedra via corner sharing, forming 1D 4- and 6-MR tunnels along the c axis. Ba1 ions reside in the tunnels of the 6-MRs, whereas Ba2 ions are located at the interlayer space. Both compounds feature new types of topological structures. Second-harmonic-generation (SHG) measurements indicate that Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) displays a weak SHG response of about 0.3 times that of KH(2)PO(4). Optical, thermal stability, and ferroelectric properties as well as theoretical calculations have also been performed.  相似文献   

5.
A novel aluminoborate (NH(4))(6)[C(5)NH(12)](6)[Al(12)B(65)O(105)(OH)(33)]·(H(2)O)(15) (QD-6), has been synthesized under mild hydrothermal conditions and characterized by IR, elemental analysis, TGA, powder and single-crystal X-ray diffractions. This compound crystallizes in the rhombohedral space group R3 (No. 148) with the lattice constants a = 23.7421(2) ?, c = 24.7699(3) ?, V = 12091.9(2) ?(3), and Z = 3. QD-6 consists of two unprecedented aluminoborate clusters, [Al(6)B(34)O(54)(OH)(18)](6-) and [Al(6)B(31)O(51)(OH)(15)](6-), which are built from the same hexagon-like [B@Al(6)O(24)] clusters and [B(11)O(17)(OH)(6)] or [B(10)O(16)(OH)(5)] polyborates.  相似文献   

6.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

7.
An approach for the preparation of oxy/hydroxy briged Fe(III) clusters that takes advantage of hydrolytic condensations of well defined {Fe(2)hpdta(H(2)O)(4)} building units is presented. Co-ligands such as tripodal H(3)tea or bidentate organic bases such as ethylenediamine (enH(2)) can be used to complete the coordination spheres of the Fe(III) centres and stabilise unsymmetrical iron-oxo clusters with non-zero magnetic ground spin-states. This strategy led to the isolation of a pentanuclear complex [Fe(5)(μ(3)-O)(hpdta)(H(2)tea)(Htea)(2))(tea)]·{N(C(2)H(4)OH)(3)}·2EtOH·7H(2)O (1) and a nonanuclear coordination complex [Fe(9)(μ(3)-O)(5)(μ-OH)(5)(en)(6)(hpdta)(2)](NO(3))(2)·7H(2)O (2).  相似文献   

8.
The nonmetal cation polyborate salt of stoichiometry [H(2)en](2)[B(11)O(18)(OH)]·7H(2)O is obtained from the reaction of 1,2-diaminoethane and boric acid (1:5 ratio) in H(2)O/MeOH. An X-ray crystallographic study of the product reveals that the polyborate moiety is composed of two isolated hydrated polyborate anions: [B(4)O(5)(OH)(4)](2-) and [B(7)O(9)(OH)(5)](2-). The structure is templated by the cations with the anions forming a supramolecular H-bonded network, augmented by additional H-bonds involving the waters of crystallization and the cations.  相似文献   

9.
The influence of rigid or semirigid dicarboxylate anions, terephtalate (TerP(2-)), isophtalate (IsoP(2-)), and phenylenediacetate (PDA(2-)) on the self-condensation process of the [Mo(2)O(2)S(2)](2+) dioxothio cation has been investigated. Three new molybdenum rings, [Mo(12)O(12)S(12)(OH)(12)(TerP)](2-) ([Mo(12)TerP](2-)), [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(4)(PDA)(2)](4-) ([Mo(16)(PDA)(2)](4-)), and [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(2)(IsoP)(2)](4-) ([Mo(16)(IsoP)(2)](4-)) have been isolated and unambiguously characterized in the solid state by single-crystal X-ray studies and in solution by various NMR methods and especially by diffusion-correlated NMR ((1)H DOSY) spectroscopy, which was shown to be a powerful tool for the characterization and speciation of templated molybdenum ring systems in solution. Characterization by FT-IR and elemental analysis are also reported. The dynamic and thermodynamic properties of both the sixteen-membered rings were studied in aqueous medium. Specific and distinct behaviors were revealed for each system. The IsoP(2-)/[Mo(2)O(2)S(2)](2+) system gave rise to equilibrium, involving mono-templated [Mo(12)IsoP](2-) and bis-templated [Mo(16)(IsoP)(2)](4-) ions. Thermodynamic parameters have been determined and showed that the driving-force for the formation of the [Mo(16)(IsoP)(2)](4-) is entropically governed. However, whatever the conditions (temperature, proportion of reactants), the PDA(2-)/[Mo(2)O(2)S(2)](2+) system led only to a single compound, the [Mo(16)(PDA)(2)](4-) ion. The latter exhibits dynamic behavior, consistent with the gliding of both the stacked aromatic groups. Stability and dynamics of both Mo(16) rings was related to weak hydrophobic or pi-pi stacking inter-template interactions and inner hydrogen-bond network occurring within the [Mo(16)(IsoP)(2)](4-) and [Mo(16)(PDA)(2)](4-) ions.  相似文献   

10.
Five new organic-inorganic assemblies, [Co(en)(3)][Co(en)(2)As(8)V(14)O(42)(H(2)O)].16H(2)O (1), [Ni(Meen)(3)](4)[Ni(Meen)(2)][As(8)V(14)O(42)(NO(3))](2).8H(2)O (2), [Cd(en)(3)][Cd(phen)(en)(H(2)O)(2)][(en)CdAs(8)V(13)O(41)(H(2)O)].1.5H(2)O (3), [Cd(phen)(2)(en)](2)[(phen)CdAs(8)V(13)O(41)(H(2)O)].21H(2)O.phen (4), [Zn(en)(2)](2)[(bpe)(2)Zn(2)As(8)V(12)O(40)(H(2)O)] (5) (en = ethylenediamine, Meen = 1,2-diaminopropane, phen = 1,10-phenanthroline, and bpe= 1,2-bis(4-pyridyl)ethylene) have been synthesized and characterized. Among them, compounds 1 and 2 are constructed from the [As(8)V(14)O(42)] cluster; compounds 3 and 4 are constructed from the Cd-substituted polyoxovanadate [CdAs(8)V(13)O(41)] cluster, while compound 5 consists of bizinic-substituted polyoxovanadate [Zn(2)As(8)V(12)O(40)] building units. It can be assumed that the metal ions used in these reaction systems play a crucial role in controlling the formation of the arsenic-vanadium-cluster backbones, and further leading to the formation of hybrids based on these clusters.  相似文献   

11.
A dodecazinc silicotungstate K(20)Na(2)[Zn(6)(OH)(7)(H(2)O)(Si(2)W(18)O(66))](2)·34H(2)O (1) has been synthesized and characterized by X-ray crystallography, elemental analysis, infrared, UV-vis spectroscopy, cyclic voltammetry, acid-base titration, and DFT calculations. The twelve zinc atoms between the two [Si(2)W(18)O(66)](16-) frameworks make this complex more stable hydrolytically than the heteropolytungstate ligands, [Si(2)W(18)O(66)](16-), themselves. The structurally unique central Zn(12) core is formed by the fusion of two [Zn(6)(OH)(7)(H(2)O)](5+) units through two edge-sharing Zn6 atoms. DFT B3LYP calculations give HOMO-LUMO and (HOMO - 1)-LUMO energy gaps of ~3.65 and 3.91 eV, respectively, as compared to the band gap in ZnO of 3.35 eV.  相似文献   

12.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

13.
Calin N  Sevov SC 《Inorganic chemistry》2003,42(22):7304-7308
A novel mixed-valence polyoxomolybdenum anion, [Mo(V)(7)Mo(VI)O(16)(O(3)PPhPO(3)H)(4)](3)(-), was synthesized hydrothermally from molybdenum oxide, molybdenum metal, boric and phosphoric acids, 1,2-phenyldiphosphonic acid, and imidazole (ImH) and was structurally characterized as an imidazolium salt (orthorhombic, Aba2; a = 16.674(4), b = 17.238(1), and c = 24.81(2) A). One- and two-dimensional structures of this anion and additional molybdenum diphosphonate linkers were assembled as well. They were structurally characterized as their pyridinium (pyH) salts (pyH)(4)[[Mo(V)(7)Mo(VI)O(16)(O(3)PPhPO(3))(2)(O(3)PPhPO(3)H)(2)][Mo(2)O(4)(OH)(HO(3)PPhPO(3)H)]].5H(2)O (monoclinic, P2(1)/c; a = 20.8506(9), b = 22.866(1), and c = 21.1403(9) A; beta = 118.7087(8) degrees ) and (pyH)(3)[[Mo(V)(7)Mo(VI)O(16)(O(3)PPhPO(3))(4)][Mo(2)O(2)(OH)(2)(HO(3)PPhPO(3)H)]].3H(2)O (orthorhombic, Pca2(1); a = 19.057(1), b = 20.402(2), and c = 20.660(2) A). The compounds were also characterized by IR spectroscopy and magnetic measurements.  相似文献   

14.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

15.
Four di-Cu(II)-substituted sandwich-type germanomolybdates, (H(2)en)(2)H(7){[Na(0.5)(H(2)O)(3.5)](2)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·6H(2)O (1), (H(2)en)(2)H{[Na(2.5)(H(2)O)(12)](2)[Cu(en)(2)][Cu(2)(β-Y-GeMo(9)O(33))(2)]}·8H(2)O (2), [Na(4)(H(2)O)(12)](2)H(4)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·11H(2)O (3) and [Cu(en)(2)](2)[Cu(en)(2)(H(2)O)](2){[Cu(en)(2)](2)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·8H(2)O (4) (en = ethylenediamine), have been prepared. It is interesting that 1-3 were obtained in the same aqueous solution reaction system but exhibited different structures: 1 displays a 0D structure, 2 shows an organic-inorganic 1D chain structure, while 3 displays a 2D network. 4 was synthesized under hydrothermal condition by the same reagents, which represents the first transition metal-sandwiched organic-inorganic 2D heteropolymolybdate.  相似文献   

16.
The first chainlike germanate, [Ge(7)O(13)(OH)(2)F(3)](3)(-).Cl(-).2[Ni(dien)(2)](2+), has been solvothermally synthesized by using Ni(dien)(2)(2+) cations as the template and characterized by IR, SEM, TGA, powder X-ray diffraction (PXRD), energy-dispersive X-ray analysis (EDXA), elemental analysis, and single-crystal X-ray diffraction, respectively. This compound crystallized in the monoclinic space group P2/nwith a = 8.8904(2) A, b = 17.4374(3) A, c = 13.2110(3) A, beta = 101.352(1) degrees, V = 2007.97(7) A(3), and Z = 2. Interestingly, the structure contains two types of chiral mer-[Ni(dien)(2)](2+) cations and two types of chiral chains, one left-handed and the other right-handed, which lead to a racemic compound. The orderly separation of achiral s-fac-[Ni(dien)(2)](2+) and chiral mer-[Ni(dien)(2)](2+) isomers was found in the structure. The structure is stabilized by N-H.O(F, Cl) hydrogen bonds.  相似文献   

17.
Son JH  Kwon YU  Han OH 《Inorganic chemistry》2003,42(13):4153-4159
By reacting Keggin-type polyoxometalate cluster anions H(2)W(12)O(40)(6)(-) (metatungstate) or Co(II)W(12)O(40)(6)(-) (tungstocobaltate) with the large aluminum cluster polycation [Al(30)O(8)(OH)(56)(H(2)O)(26)](18+), Keggin ion based molecular ionic compounds [delta-Al(13)O(4)(OH)(24)(H(2)O)(12)][XW(12)O(40)](OH).nH(2)O (X = H(2) (1) and Co (2); n congruent with 20) and [W(2)Al(28)O(18)(OH)(48)(H(2)O)(24)][H(2)W(12)O(40)](2).55H(2)O (3) were obtained. The polygon-shaped cluster ions are packed alternately through intercluster hydrogen bonds as well as electrostatic interactions, leaving large pores, which result from the packing of large clusters. The clusters are arranged in square pyramidal geometries, showing face-to-face interactions between them. The isolation of metastable [delta-Al(13)O(4)(OH)(24)(H(2)O)(12)](7+) and the formation of a new transition metal substituted aluminum heteropolycation [W(2)Al(28)O(18)(OH)(48)(H(2)O)(24)](12+) in 1-3 result from the slow fragmentation and recombination of Al(30) in the presence of suitable counter cluster anions with similar shape and charge.  相似文献   

18.
The reactions of (NH(4))(2)Mo(2)O(7)·2H(2)O with polyhydroxy phenols (catechol or 2,3-dihydroxynaphthalene) and ethylenediamine (en), trimethylenediamine (tn), 1,2-propanediamine (pn), triethylamine (Et(3)N) respectively, in the mixed-solvent of MeCN-EtOH-amine, have resulted in five molybdenum(VI) complexes, (enH(2))[Mo(VI)O(3)(cat)(en)] (1), (tnH(2))[Mo(VI)O(3)(cat)(tn)] (2), (enH)(2)[Mo(VI)O(2)(cat)(2)](en)(0.5) (3), (pnH(2))(2)[Mo(VI)O(2)(cat)(2)] (4) and (HNEt(3))(2)[Mo(VI)O(2)(C(10)H(8)O(2))(2)] (5), of which the structural features were investigated by X-ray diffraction. MTT assay tests indicated that their inhibition ratios against human cancer cells decreased in the order: (1) ≈ (2) > (3) ≈ (4) > (5), i.e. the activities decreased when the chelation number or the size of the aromatic ligand increased, which was consistent with the Gibbs free energies (ΔG) determined from theoretical computations by Gaussian 03. The mechanisms behind this trend were discussed preliminarily.  相似文献   

19.
A kinetic study of [OsO(4)] reduction by aliphatic alcohols (MeOH and EtOH) was performed in a 2.0 M NaOH matrix at 298.1 K. The rate model that best fitted the UV-VIS data supports a one-step, two electron reduction of Os(VIII) (present as both the [Os(VIII)O(4)(OH)](-) and cis-[Os(VIII)O(4)(OH)(2)](2-) species in a ratio of 0.34:0.66) to form the trans-[Os(VI)O(2)(OH)(4)](2-) species. The formed trans-[Os(VI)O(2)(OH)(4)](2-) species subsequently reacts relatively rapidly with the cis-[Os(VIII)O(4)(OH)(2)](2-) complex anion to form a postulated [Os(VII)O(3)(OH)(3)](2-) species according to: cis-[Os(VIII)O(4)(OH)(2)](2-) + trans-[Os(VI)O(2)(OH)(4)](2-) (k+2) (k-2) 2[Os(VII)O(3)(OH)(3)](2-). The calculated forward, k(+2), and reverse, k(-2), reaction rate constants of this comproportionation reaction are 620.9 ± 14.6 M(-1) s(-1) and 65.7 ± 1.2 M(-1) s(-1) respectively. Interestingly, it was found that the postulated [Os(VII)O(3)(OH)(3)](2-) complex anion does not oxidize MeOH or EtOH. Furthermore, the reduction of Os(VIII) with MeOH or EtOH is first order with respect to the aliphatic alcohol concentration. In order to corroborate the formation of the [Os(VII)O(3)(OH)(3)](2-) species predicted with the rate model simulations, several Os(VIII)/Os(VI) mole fraction and mole ratio titrations were conducted in a 2.0 M NaOH matrix at 298.1 K under equilibrium conditions. These titrations confirmed that the cis-[Os(VIII)O(4)(OH)(2)](2-) and trans-[Os(VI)O(2)(OH)(4)](2-) species react in a 1:1 ratio with a calculated equilibrium constant, K(COM), of 9.3 ± 0.4. The ratio of rate constants k(+2) and k(-2) agrees quantitatively with K(COM), satisfying the principle of detailed balance. In addition, for the first time, the molar extinction coefficient spectrum of the postulated [Os(VII)O(3)(OH)(3)](2-) complex anion is reported.  相似文献   

20.
Two new compounds containing the title diphosphono-polyoxometalate anion and diprotonated ethylenediamine (enH(2)) or piperazine (ppzH(2)) countercations have been hydrothermally synthesized and structurally characterized ((enH(2))(4)[Mo(7)O(16)(O(3)PCH(2)PO(3))(3)].7H(2)O, triclinic, P(-)1, Z = 2, a = 10.3455(7) A, b = 13.136(1) A, and c = 20.216(3) A, alpha = 93.247(6) degrees, beta = 96.434(6) degrees, and gamma = 111.900(6) degrees; (ppzH(2))(4)[Mo(7)O(16)(O(3)PCH(2)PO(3))(3)].8H(2)O, triclinic, P(-)1, Z = 2, a = 13.255(2) A, b = 13.638(2) A, and c = 16.874(4) A, alpha = 93.20(2) degrees, beta = 101.27(2) degrees, and gamma = 105.87(1) degrees). The anion is a ring of three pairs of edge-sharing octahedra of Mo(V)O(6) (with Mo(V)-Mo(V) bonds) that share corners with each other. The diphosphonate groups connect the pairs at the periphery. The ring is "capped" by a tetrahedron of Mo(VI)O(4). According to magnetic measurements, the compounds are diamagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号