首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first successful attempt to construct 3D supramolecular frameworks with high-nuclear 3d-4f heterometallic clusters as a node is reported. The self-assembly of Ln3+, Cu2+ and amino acid in solution leads to the formation of two polymers, 35-nuclear complex [Sm6Cu29] 1 with a primitive cubic net-like structure and 36-nuclear complex [Nd6Cu30] 2 with a face-centred cubic network type structure. Glycine and L-proline, respectively, were used as ligands. It should be noted that 2 has a chiral framework. X-ray structure analyses show that 1 crystallizes in the triclinic P1 space group (a=19.6451(8), b=20.4682(8), c=20.7046(8) A, alpha=89.453(1), beta=66.290(1), gamma=68.572(1) degrees, V=7003.0(5) A3 and Z=1) and 2 belongs to the cubic P2(1)3 space group (a=b=c=32.4341(3) A, V=34 119.7(5) A3 and Z=4). Both complexes utilize Ln6Cu24 octahedral clusters as nodes and trans-Cu(amino acid)2 groups as bridges. Electrical conductivity measurements reveal that both polymers behave as semiconductors.  相似文献   

2.
1 INTRODUCTION In the last decade, we have been interested in the synthesis of [PPh4][(h5-C5Me5)MS3] (M = Mo, W)[1, 2] , Whose organometallic trisulfido anions show high reactivity towards various transition metals[3~6] . We once reported that the reaction of [PPh4][(h5-C5Me5)WS3] with CuBr in CH3CN afforded a double incomplete-cubane cluster [PPh4]2[(h5-C5Me5)WS3(CuBr)3]2[3], while the analogous reaction of [PPh4][(h5-C5Me5)WS3] with CuBr in CHCl3 gave rise to a 揻our-…  相似文献   

3.
4.
5.
Reactions of two preformed trinuclear W/Cu/S clusters, [A](2)[WS(4)(CuCN)(2)] (1: A = Et(4)N; 2: A = PPh(4)), with different concentrations of acetic acid in MeCN generate two interesting 2D polymeric clusters [Et(4)N](3)[(WS(4)Cu(2))(2)(mu-CN)(3)].2MeCN (3), and [PPh(4)][WS(4)Cu(3)(mu-CN)(2)].MeCN (4), respectively. Compound 4 can also be readily obtained in a high yield from the reaction of 2 with equimolar [Cu(MeCN)(4)]PF(6) in MeCN. These compounds have been characterized by elemental analysis, IR spectra, thermal analysis, and single-crystal X-ray diffraction. An X-ray analysis reveals that compound 3 retains the WS(4)Cu(2) cluster core, which serves as a 3-connecting node to link equivalent nodes via single cyanide bridges, forming an anionic 2D (6,3) net. Compound 4 consists of a T-shaped WS(4)Cu(3) core, which also acts as a 3-connecting node, with links to 3 equivalent clusters either through single or double cyanide bridges, affording a different anionic 2D (6,3) network. The acetic acid induced aggregation of 3 and 4 from the two cluster precursors 1 and 2 suggests that this simple synthetic strategy is likely to be applicable to many related systems.  相似文献   

6.
7.
合成了四个三核簇合物[A]2[MS4(CuCN)2](1A=Et4N,M=Mo;2A=PPh4,M=W;3A=Et4N,M=W;4A=PPh4,M=Mo),测定了[Et4N]2[MoS4(CuCN)2]*H2O(1*H2O)和[PPh4]2[WS4(CuCN)2]*0.5DMF*H2O(2*0.5DMF*H2O)的晶体结构.1和2的簇阴离子[MS4(CuCN)2]2-(M=Mo,W)均具有一个双齿配体MS42-和两个CuCN形成的近似D2d对称性结构.  相似文献   

8.
9.
Summary Reaction of [NH4]2[WS4] with CuX (X = Cl or I) and R4NX (R = Et or n-Bu) in the solid state gave two new bimetallic compounds with W:Cu compositions from 1:3 to 1:4. Compound (1), [(n-Bu)4N]3[WS4Cu3Cl3Br], crystallizes in the hexagonal space group R3c with a = 17.051(5), c = 38.372(5) Å, V = 9661.8 Å3, Z = 6. The cluster anion of (1) comprises a cubane-like cluster core [WS3Cu3Br] of C3 symmetry with a Cl atom attached to each of the three Cu atoms and one terminal sulphido ligand attached to the W atom. Compound (2), [Et4N]4[WS4Cu4I6], crystallizes in the monoclinic space group C2/m with a = 29.702(6), b = 12.7887(5), c = 15.327(3)Å, = 99.69(2), V = 5738.1 Å3, Z = 4. In the cluster anion of (2), four edges of the WS4 core are coordinated by four Cu atoms, giving a WS4Cu4 aggregate of approximate C2V symmetry.  相似文献   

10.
Lang JP  Xu QF  Zhang WH  Li HX  Ren ZG  Chen JX  Zhang Y 《Inorganic chemistry》2006,45(26):10487-10496
In our working toward the rational design and synthesis of cluster-based supramolecular architectures, a set of new [WS4Cu4]- or [MoOS3Cu3]-based supramolecular assemblies have been prepared from reactions of preformed cluster compounds [Et4N]4[WS4Cu4I6] (1) and [(n-Bu)4N]2[MoOS3Cu3X3] (2, X = I; 3, X = SCN) with flexible ditopic ligands such as dipyridylsulfide (dps), dipyridyl disulfide (dpds), and their combinations with dicyanamide (dca) anion and 4,4'-bipy. The cluster precursor 1 reacted with dps or dpds and sodium dicyanamide (dca) in MeCN to produce [WS4Cu4I2(dps)3].2MeCN (4.2MeCN) and [WS4Cu4(dca)2(dpds)2].Et2O.2MeCN (5.Et2O.2MeCN), respectively. On the other hand, treatment of 2 with dpds in DMF/MeCN afforded [MoOS3Cu3I(dpds)2].0.5DMF.2(MeCN)0.5 (6.0.5DMF.2(MeCN)0.5) while reaction of 3 with sodium dicyanamide (dca) and 4,4'-bipy in DMF/MeCN gave rise to [MoOS3Cu3(dca)(4,4'-bipy)1.5].DMF.MeCN (7.DMF.MeCN). Compounds 4.2MeCN, 5.Et2O.2MeCN, 6.0.5DMF.2(MeCN)0.5, and 7.DMF.MeCN have been characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray crystallography. Compound 4 contains a 2D layer array made of the saddle-shaped [WS4Cu4] cores interlinked by three pairs of Cu-dps-Cu bridges. Compound 5 has another 2D layer structure in which the [WS4Cu4] cores are held together by four pairs of Cu-dca-Cu and Cu-dpds-Cu bridges. Compound 6 displays a 1D spiral chain structure built of the nido-like [MoOS3Cu3] cores via two pairs of Cu-dpds-Cu bridges. Compound 7 consists of a 2D staircase network in which each [MoOS3Cu3(4,4'-bipy]2 dimeric unit interconnects with four other equivalent units by a pair of 4,4'-bipy ligands and two pairs of dca anions. The [WS4Cu4] core in 4 or 5 and the [MoS3Cu3] core in 7 show a planar 4-connecting node and a seesaw-shaped 4-connecting node, respectively, which are unprecedented in cluster-based supramolecular compounds. The successful assembly of 4-7 from the three cluster precursors 1-3 through flexible ditopic ligands provides new routes to the rational design and construction of complicated cluster-based supramolecular arrays.  相似文献   

11.
12.
13.
14.
In the cone conformation calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition-metal centres. Reaction of these molecules with manganese salts in the presence of an appropriate base (and in some cases co-ligand) results in the formation of a family of calixarene-supported [Mn(III)(2)Mn(II)(2)] clusters that behave as single-molecule magnets (SMMs). Variation in the alkyl groups present at the upper-rim of the cone allows for the expression of a degree of control over the self-assembly of these SMM building blocks, whilst retaining the general magnetic properties. The presence of various different ligands around the periphery of the magnetic core has some effect over the extended self-assembly of these SMMs.  相似文献   

15.
在过去20多年里,人们对合成Mo(W)/Cu/S簇合物一直抱有浓厚的兴趣,这主要缘于此类簇合物丰富的结构化学,以及在生命科学和材料科学方面的潜在应用前景[1,2].在这些簇合物中,含吡啶类配体的Mo(W)/Cu/S簇合物的合成因具有良好的三阶非线性光学性质,近年来受到人们的青睐[3~8].  相似文献   

16.
17.
18.
虞虹  徐庆锋  纪顺俊  郎建平  孙真荣 《中国化学》2003,21(12):1591-1595
IntroductionTetrathiometallateanions [MS4 ]2 - (M =Mo ,W )andtheirclusterswithvarioustransitionmetalsarewell knownfortheirrichcoordinationchemistry ,1 7andtheirrelationtoindustrialcatalysisprocess ,8biologicalsystems ,9andNLOmaterials .10 12 However,thechemistryoftheorganometallictrisulfidecomplexes [PPh4 ][(η5 C5Me5) MS3](M =Mo ,13W14 )andtheirrelatedmixed metalclus tershavebeenlessinvestigated .15,16 Inordertoextendourknowledgeaboutthechemistryof [PPh4 ][(η5 C5Me5) MS3]andconti…  相似文献   

19.
The previously reported hexanuclear cluster [Pt(6)(mu-PtBu(2))(4)(CO)(6)](2+)[Y](2) (1-Y(2): Y=CF(3)SO(3) (-)) contains a central Pt(4) tetrahedron bridged at each of the opposite edges by another platinum atom; in turn, four phosphido ligands bridge the four Pt-Pt bonds not involved in the tetrahedron, and, finally, one carbonyl ligand is terminally bonded to each metal centre. Interestingly, the two outer carbonyls are more easily substituted or attacked by nucleophiles than the inner four, which are bonded to the tetrahedron vertices. In fact, the reaction of 1-Y(2) with 1 equiv of [nBu(4)N]Cl or with an excess of halide salts gives the monochloride [Pt(6)(mu-PtBu(2))(4)(CO)(5)Cl](+)[Y], 2-Y, or the neutral dihalide derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)X(2)] (3: X=Cl; 4: X=Br; 5: X=I). Moreover, the useful unsymmetrically substituted [Pt(6)(mu-PtBu(2))(4)(CO)(4)ICl] (6) was obtained by reacting equimolar amounts of 2 and [nBu(4)N]I, and the dicationic derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)L(2)](2+)[Y](2) (7-Y(2): L=(13)CO; 8-Y(2): L=CNtBu; 9-Y(2): L=PMe(3)) were obtained by reaction of an excess of the ligand L with 1-Y(2). Weaker nitrogen ligands were introduced by dissolving the dichloride 3 in acetonitrile or pyridyne in the presence of TlPF(6) to afford [Pt(6)(mu-PtBu(2))(4) (CO)(4)L(2)](2+)[Z](2) (Z=PF(6) (-), 10-Z(2): L=MeCN; 11-Z(2): L=Py). The "apical" carbonyls in 1-Y(2) are also prone to nucleophilic addition (Nu(-): H(-), MeO(-)) affording the acyl derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)(CONu)(2)] (12: Nu=H; 13: Nu=OMe). Complex 12 is slowly converted into the dihydride [Pt(6)(mu-PtBu(2))(4)(CO)(4)H(2)] (14), which was more cleanly prepared by reacting 3 with NaBH(4). In a unique case we observed a reaction involving also the inner carbonyls of complex 1, that is, in the reaction with a large excess of the isocyanides R-NC, which form the corresponding persubstituted derivatives [Pt(6)(mu-tPBu(2))(4)(CN-R)(6)](2+)[Y](2), (15-Y(2): R=tBu; 16-Y(2) (2-): R=-C(6)H(4)-4-C triple bond CH). All complexes were characterized by microanalysis, IR and multinuclear NMR spectroscopy. The crystal and molecular structures of complexes 3, 5, 6 and 9-Y(2) are also reported. From the redox viewpoint, all complexes display two reversible one-electron reduction steps, the location of which depends both upon the electronic effects of the substituents, and the overall charge of the original complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号