首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron-bispidine complexes are efficient catalysts for the oxidation of thioanisole to phenylmethylsulfoxide with iodosylbenzene as oxidant. With the tetradentate bispidine ligand L(1) (L(1) = 2,4-pyridyl-3,7-diazabicyclo[3.3.1]nonane)) the catalytic efficiency is smaller than with the pentadentate bispidine ligand L(2) (L(2) = 2,4-pyridyl-7-(pyridine-2-ylmethyl)-3,7-diazabicyclo[3.3.1]nonane)). Based on the redox potentials (iron complexes with L(1) are stronger oxidants than with L(2)) and known efficiencies in catalytic olefin oxidation and C-H activation reactions, the expectations were different. A DFT-based analysis is used to explain the apparent contradiction, and this is based on differences in the electronic ground states of the ferryl complexes as well as in the oxygen transfer transition states.  相似文献   

2.
Redox-active esters (RAEs) as alkyl radical precursors have demonstrated great advantages for C–C bond formation. A decarboxylative cross-coupling method is described to afford substituted alkynes from various carboxylic acids using copper catalysts CuCl and Cu(acac)2. The photoexcitation of copper acetylides with electron-rich NEt3 as a ligand provides a general strategy to generate a range of alkyl radicals from RAEs of carboxylic acids, which can be readily coupled with a variety of aromatic alkynes. The scope of this cross-coupling reaction can be further expanded to aliphatic alkynes and alkynyl silanes using a catalytic amount of preformed copper-phenylacetylide. In addition, DFT calculations revealed the favorable reaction pathway and that the bidentate acetylacetonate ligand of the copper intermediate plays an important role in inhibiting the homo-coupling of the alkyne.

Redox-active esters (RAEs) as alkyl radical precursors have demonstrated great advantages for Cu-catalysed C–C bond formation.  相似文献   

3.
Thermodynamic investigations relevant to hydrogen atom transfer by the high-valent iron imido complex [LMesFe[triple bond]NAd]OTf have been undertaken. The complex is found to be weakly oxidizing by cyclic voltammetry (E1/2 = -0.98 V vs Cp2Fe+/Cp2Fe in MeCN). A combination of experimental and computational studies has been used to determine the acidity of LMesFe-N(H)Ad+ (pKa = 37 in MeCN), allowing the N-H BDFE (88(5) kcal/mol) to be calculated from a thermodynamic cycle. Consistent with this value, [LMesFe[triple bond]NAd]OTf reacts with 9,10-dihydroanthracene (C-H BDE = 78(1) kcal/mol) to form anthracene.  相似文献   

4.
A combined experimental and density functional computational study was used to probe the mechanism for the reduction of indoles using simple borane BH3·DMS (DMS?=?dimethyl sulfide). Experimental and computational studies all steer to the formation of the reduced species 1-BH2-indolines as the resting state for this reaction, as opposed to the historically presumed formation of the unreduced 1-BH2-indoles, before the addition of a proton source to form the final product indolines. Furthermore, it was observed that molecular H2 was generated and consumed in the reaction. Computations put forward hydroboration followed by protodeborylation as the very reasonable mechanistic route for the formation of experimentally observed major intermediate 1-BH2 indolines. For the H2 consumption in the reaction, computations suggest the frustrated Lewis pair-type heterolytic splitting of H2 by a bis(3-indolinyl)borane intermediate.  相似文献   

5.
The mean (N-O) bond dissociation enthalpies were derived for three 2-methyl-3-(R)-quinoxaline 1,4-dioxide (1) derivatives, with R = methyl (1a), ethoxycarbonyl (1b), and benzyl (1c). The standard molar enthalpies of formation in the gaseous state at T = 298.15 K for the three 1 derivatives were determined from the enthalpies of combustion of the crystalline solids and their enthalpies of sublimation. In parallel, accurate density functional theory-based calculations were carried out in order to estimate the gas-phase enthalpies of formation for the corresponding quinoxaline derivatives. Also, theoretical calculations were used to obtain the first and second N-O dissociation enthalpies. These dissociation enthalpies are in excellent agreement with the experimental results herewith reported.  相似文献   

6.
The reaction mechanism for imine hydrosilylation in the presence of an iron methyl complex and hydrosilane was studied using density functional theory at the M06/6-311G(d,p) level of theory. Benzylidenemethylamine (PhCH = NMe) and trimethylhydrosilane (HSiMe3) were employed as the model imine and hydrosilane, respectively. Hydrosilylation has been experimentally proposed to occur in two stages. In the first stage, the active catalyst (CpFe(CO)SiMe3, 1 ) is formed from the reaction of pre-catalyst, CpFe(CO)2Me, and hydrosilane through CO migratory insertion into the Fe Me bond and the reaction of the resulting acetyl complex intermediate with hydrosilane. In the second stage, 1 catalyzes the reaction of imine with hydrosilane. Calculations for the first stage showed that the most favorable pathway for CO insertion involved a spin state change, that is, two-state reactivity mechanism through a triplet state intermediate, and the acetyl complex reaction with HSiMe3 follows a σ-bond metathesis pathway. The calculations also showed that, in the catalytic cycle, the imine coordinates to 1 to form an Fe C N three-membered ring intermediate accompanied by silyl group migration. This intermediate then reacts with HSiMe3 to yield the hydrosilylated product through a σ-bond metathesis and regenerate 1 . The rate-determining step in the catalytic cycle was the coordination of HSiMe3 to the three-membered ring intermediate, with an activation energy of 23.1 kcal/mol. Imine hydrosilylation in the absence of an iron complex through a [2 + 2] cycloaddition mechanism requires much higher activation energies. © 2018 Wiley Periodicals, Inc.  相似文献   

7.
8.
The oxidation kinetics of various aliphatic primary and secondary alcohols having varied hydrocarbon chain length were studied using cetyltrimethylammonium dichromate (CTADC) in dichloromethane (DCM) in the presence of acetic acid and in the presence of a cationic surfactant. The rate of the reaction is highly sensitive to the change in [CTADC], [alcohol], [acid], [surfactant], polarity of the solvents, and reaction temperature. A Michaelis-Menten type kinetics was observed with respect to substrate. The chemical nature of the intermediate and the reaction mechanism were proposed on the basis of (i) observed rate constant dependencies on the reactants, that is, fractional order with respect to alcohol and acid and a negative order with respect to oxidant, (ii) high negative entropy change, (iii) inverse solvent kinetic isotope effect, k(H2O)/k(D2O) = 0.76, (iv) low primary kinetic isotope effect, kH/kD = 2.81, and (v) the k(obs) dependencies on solvent polarity parameters. The observed experimental data suggested the self-aggregation of CTADC giving rise to a reverse micellar system akin to an enzymatic environment, and the proposed mechanism involves the following: (i) formation of a complex between alcohol and the protonated dichromate in a rapid equilibrium, equilibrium constant K = 5.13 (+/-0.07) dm(3) mol(-1), and (ii) rate determining decomposition (k(2) = (7.6 +/- 0.7) x 10(-3) s(-1)) of the ester intermediate to the corresponding carbonyl compound. The effect of [surfactant] on the rate constant and the correlation of solvent parameters with the rate constants support the contribution of hydrophobic environment to the reaction mechanism.  相似文献   

9.
The Nazarov reaction of pentadienyl cations generated by protonation of either dienones or alkoxytrienes has been examined in detail both experimentally and by DFT calculations. In particular, calculations at the B3LYP/6‐311G** level of theory accurately predicted, and accounted for, the outcome of the Brønsted acid catalyzed electrocyclization of 4π‐electron systems in which one of the double bonds involved in the process was embedded in N‐ and S‐heterocyclic rings. Calculations showed that both heteroatoms are capable of accelerating the ring closure by stabilizing the partial positive charge which develops at C‐6 (C‐2) in the transition state, with S‐heterocyclic derivatives being more reactive than the corresponding N‐containing compounds. In general, pentadienyl cations generated by protonation of alkoxytrienes were expected to react faster than those obtained by protonation of the corresponding dienones, as the latter were stabilized by a hydrogen bond. The presence of a substituent on the heterocyclic ring significantly affects the stereoselectivity (torquoselectivity) only in the case of the N‐heterocyclic derivatives, in which a 2‐alkyl group is axially oriented, providing the cis‐2,5‐disubstituted isomer only. Instead, with substituted S‐heterocyclic compounds, the anticipated torquoselectivity was very low and, in fact, a 3:1 diastereomeric mixture between the trans and cis products was experimentally found after ring closure. For this study, the synthesis of the appropriate N‐ and S‐containing dienones and alkoxytrienes was realized to evaluate the predictivity power of the DFT computations, which was very good in all of the cases examined, both in terms of reactivity and stereoselectivity. The consistency observed between computational and experimental results, therefore, shows the usefulness of DFT calculations at the B3LYP/6‐311G** level of theory as a robust instrument for the prediction of reactivity and stereoselectivity in the Nazarov electrocyclic reaction.  相似文献   

10.
Experimental and DFT-based computational results on the aziridination mechanism and the catalytic activity of (bispidine)copper(I) and -copper(II) complexes are reported and discussed (bispidine=tetra- or pentadentate 3,7-diazabicyclo[3.1.1]nonane derivative with two or three aromatic N donors in addition to the two tertiary amines). There is a correlation between the redox potential of the copper(II/I) couple and the activity of the catalyst. The most active catalyst studied, which has the most positive redox potential among all (bispidine)copper(II) complexes, performs 180 turnovers in 30 min. A detailed hybrid density functional theory (DFT) study provides insight into the structure, spin state, and stability of reactive intermediates and transition states, the oxidation state of the copper center, and the denticity of the nitrene source. Among the possible pathways for the formation of the aziridine product, the stepwise formation of the two N-C bonds is shown to be preferred, which also follows from experimental results. Although the triplet state of the catalytically active copper nitrene is lowest in energy, the two possible spin states of the radical intermediate are practically degenerate, and there is a spin crossover at this stage because the triplet energy barrier to the singlet product is exceedingly high.  相似文献   

11.
12.
The kinetics and mechanism of oxidation of aspartic acid by the bis(hydrogen periodato) complex of Cu(III), [Cu(HIO6)2]5?, is studied in an alkaline medium. The reaction rate is first order with respect to Cu(III) and fractional order with respect to aspartic acid. The value of the observed rate constant is found to decrease with the increase in concentrations of either OH? or IO4 ?. There is a positive salt effect, and the free radical has been determined. In view of these kinetics phenomena, a plausible mechanism is proposed and the rate equations derived from the mechanism can explain all experimental results. The activation parameters along with the rate constants of the rate-determining step are calculated.  相似文献   

13.
14.
Ab initio and density functional theory calculations predict that benzocyclobutenylidene (1) has a singlet ground state in contrast to the parent phenylcarbene and many other simply substituted arylcarbenes. Calculations also predict that 1 should lie in a relatively deep potential well, while its triplet state is 14.5 kcal mol(-)(1) higher in energy. However, attempts to observe 1 directly by photolysis of two different nitrogenous precursors were not successful. Irradiation of diazobenzocyclobutene (7) (lambda > 534 nm or lambda > 300 nm) or azibenzocyclobutene (10) (lambda > 328 nm) in Ar matrixes at 10 K leads to the formation of the strained cycloalkyne 7-methylenecyclohepta-3,5-dien-1-yne (3). (13)C-Labeled 3 was also prepared in a similar manner. There is very good agreement between experimental IR spectra and computationally derived harmonic vibrational frequencies for 3 and [(13)C]-3 and excellent agreement between observed and calculated isotopic shifts. Prolonged short-wavelength irradiation converts 3 into benzocyclobutadiene (5). Phenylacetylene (6) and benzocyclobutadiene dimer (11) were identified as products arising from flash vacuum pyrolysis of diazirine 10 at 500 degrees C.  相似文献   

15.
The complete sequence of steps of a tentative catalytic cycle for intramolecular hydroamination/cyclisation (IHC) of 4,5-hexadien-1-ylamine (1) by a prototypical cationic [Cp(2)ZrCH(3)](+) zirconocene precatalyst (2) has been examined by employing a gradient-corrected DFT method. The predicted smooth overall reaction energy profile is consistent with the available experimental data, thereby providing further confidence in the proposed mechanism. Following activation of the precatalyst by protonolytic cleavage of the Zr-Me bond, the catalytically active amidoallene-Zr complex undergoes addition of an allenic C[double bond, length as m-dash]C linkage across the Zr-N sigma-bond. The alternative exo- and endocyclic pathways show similar probabilities for the sterically less encumbered reactants {1 + 2} investigated herein. However, steric factors are expected to exert control on the regioselectivity of ring closure. On the other hand, the metathesis-type transition states for subsequent protonolysis are indicated to be less sensitive to steric demands. Formation of the six-membered azacycle-Zr intermediate through intramolecular C[double bond, length as m-dash]C insertion into the Zr-N sigma-bond is predicted to be turnover limiting. The factors that govern the regioselectivity of the aminoallene IHC have been elucidated.  相似文献   

16.
The complete catalytic cycle for the intramolecular hydroamination/cyclisation (IHC) of 4,5-hexadien-1-ylamine (1) by a prototypical [ZrCp(2)Me(2)] precatalyst (2) has been scrutinized by employing a reliable DFT method. The present study conducted by means of a detailed computational characterisation of structural and energetic aspects of alternative pathways for all of the relevant elementary steps complements the mechanistic insights revealed from experimental results. The operative mechanism entails an initial transformation of precatalyst 2 into the thermodynamically prevalent, but dormant, bis(amido)-Zr compound in the presence of aminoallene 1. This complex undergoes a reversible, rate-determining alpha-elimination of 1 to form the imidoallene-Zr complex. The substrate-free form, which contains a chelating imidoallene functionality, is the catalytically active species and is rapidly transformed into azazirconacyclobutane intermediates through a [2+2] cycloaddition reaction. This highly facile process does not proceed regioselectively because the alternative pathways for the formation of five- and six-membered azacycles have comparable probabilities. Degradation of cyclobutane intermediates by following the most feasible pathway occurs through protonolysis of the metallacycle moiety and subsequent proton transfer from the Zr-NHR moiety onto the azacycle. The five-membered allylamine is generated through protonation at carbon atom C(6) followed by alpha-hydrogen elimination, whereas protonolysis of the cyclobutane moiety at the Zr-N bond followed by proton transfer onto carbon atom C(5) is the dominant route for the six-membered product. Of the two consecutive proton transfer steps, the second one determines the overall kinetics of the entire protonation sequence. This process is predicted to be substantially slower than the cycloaddition reaction. The factors that regulate the composition of the cycloamine products have been elucidated.  相似文献   

17.
[reaction: see text] Computations find that o-phenylene(halo)carbenonitrenes 2-XN, X = F, Cl, Br, have quinoidal singlet biradical ground states such as the parent o-phenylenecarbenonitrene (2-HN). Compared to the parent 2-HN, halogen substitution stabilizes the A' states relative to the A' ones. Halogen substitution also affects the barrier and exothermicity of the ring-opening reaction (to form unsaturated nitriles 4-XN, X = F, Cl, Br), but it has a smaller effect on the ring-closing reaction (to form benzo(aza)cyclobutadiene 3-XN, X = F, Cl, Br). Attempts to generate and observe the o-phenylene(halo)carbenonitrenes 2-XN, X = F, Cl, Br, using matrix isolation spectroscopy under conditions similar to those of the successful observation of 2-HN failed. Instead, the observed photoproducts were a mixture of 3-XN and 4-XN. In each case, the major product of the mixture appears to be the thermodynamically more stable one. In the case of X = Br, the observed mixture contains an additional component that is postulated to be Z-6-BrN. o-Phenylenechlorocarbenocarbene is also computed to have a quinoidal singlet biradical ground state and relatively stabilized A' excited states. Attempts to generate the biscarbene under matrix isolation conditions led to the detection of benzochlorocyclobutadiene (3-ClC), small amounts of the ring-open product (dienediyne 4-ClC), and cycloalkyne 5-ClC. Computations suggest that the formation of 5-ClC implies the generation of Z-6-ClC, which is analogous to the formation of Z-6-BrN from 2-BrN.  相似文献   

18.
19.
The kinetics of oxidation of dimethylsulphoxide (DMSO) by sodium N-bromobenzenesulphonamide or bromamine-B (BAB) has been studied in HClO4, HCl and NaOH media, at 35°C, with OsO4 as a catalyst in the latter medium. In acid medium, the rate shows a first order dependence on [BAB] and second order in [H+], but Is Independent of substrate concentration. Alkali retards the reaction (Inverse first order) and the rate is independent of oxidant concentration, but shows fractional order in [DMSO] and depends on (0sO4]2. The solvent isotope effect was studied by using D2O. Activation parameters have also been determined. Mechanisms proposed and the derived rate laws are consistent with the observed kinetics.  相似文献   

20.
The thermodynamic properties and reaction mechanism of the Morita-Baylis-Hillman (MBH) reaction have been investigated through experimental and computational techniques. The impossibility to accelerate this synthetically valuable transformation by increasing the reaction temperature has been rationalized by variable-temperature experiments and MP2 theoretical calculations of the reaction thermodynamics. An increase in temperature results in a switching of the equilibrium to the reactants occurring at even moderate temperature levels. The complex reaction mechanism for the MBH reaction has been investigated through an in-depth analysis of the suggested alternative pathways, using the M06-2X computational method. The results provided by this theoretical approach are in agreement with all the experimental/kinetic evidence such as reaction order, acceleration by protic species (methanol, phenol), and autocatalysis. In particular, the existing controversy about the character of the key proton transfer in the MBH reaction (Aggarwal versus McQuade pathways) has been resolved. Depending on the specific reaction conditions both suggested pathways are competing mechanisms, and depending on the amount of protic species and the reaction progress (early or late stage) either of the two mechanisms will be favored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号