首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this contribution, the dynamic electrophoretic mobility of spherical colloidal particles in a salt-free concentrated suspension subjected to an oscillating electric field is studied theoretically using a cell model approach. Previous calculations focusing the analysis on cases of very low or very high particle surface charge are analyzed and extended to arbitrary conditions regarding particle surface charge, particle radius, volume fraction, counterion properties, and frequency of the applied electric field (sub-GHz range). Because no limit is imposed on the volume fractions of solids considered, the overlap of double layers of adjacent particles is accounted for. Our results display not only the so-called counterion condensation effect for high particle charge, previously described in the literature, but also its relative influence on the dynamic electrophoretic mobility throughout the whole frequency spectrum. Furthermore, we observe a competition between different relaxation processes related to the complex electric dipole moment induced on the particles by the field, as well as the influence of particle inertia at the high-frequency range. In addition, the influences of volume fraction, particle charge, particle radius, and ionic drag coefficient on the dynamic electrophoretic mobility as a function of frequency are extensively analyzed.  相似文献   

2.
We analyze the influence of finite ion size effects in the response of a salt-free concentrated suspension of spherical particles to an oscillating electric field. Salt-free suspensions are just composed of charged colloidal particles and the added counterions released by the particles to the solution that counterbalance their surface charge. In the frequency domain, we study the dynamic electrophoretic mobility of the particles and the dielectric response of the suspension. We find that the Maxwell-Wagner-O’Konski process associated with the counterions condensation layer is enhanced for moderate to high particle charges, yielding an increment of the mobility for such frequencies. We also find that the increment of the mobility grows with ion size and particle charge. All these facts show the importance of including ion size effects in any extension attempting to improve standard electrokinetic models.  相似文献   

3.
In this paper, a general electrokinetic theory for concentrated suspensions in salt-free media is derived. Our model predicts the electrical conductivity and the electrophoretic mobility of spherical particles in salt-free suspensions for arbitrary conditions regarding particle charge, volume fraction, counterion properties, and overlapping of double layers of adjacent particles. For brevity, hydrolysis effects and parasitic effects from dissolved carbon dioxide, which are present to some extent in more "realistic" salt-free suspensions, will not be addressed in this paper. These issues will be analyzed in a forthcoming extension. However, previous models are revised, and different sets of boundary conditions, frequently found in the literature, are extensively analyzed. Our results confirm the so-called counterion condensation effect and clearly display its influence on electrokinetic properties such as electrical conductivity and electrophoretic mobility for different theoretical conditions. We show that the electrophoretic mobility increases as particle charge increases for a given particle volume fraction until the charge region where counterion condensation takes place is attained, for the above-mentioned sets of boundary conditions. However, it decreases as particle volume fraction increases for a given particle charge. Instead, the electrical conductivity always increases with either particle charge for fixed particle volume fraction or volume fraction for fixed particle charge, whatever the set of boundary conditions previously referred. In addition, the influence of the electric permittivity of the particles on their electrokinetic properties in salt-free media is examined for those frames of boundary conditions.  相似文献   

4.
We study the electrophoretic mobility of spherical particles and the electrical conductivity in salt-free concentrated suspensions including finite ion size effects. An ideal salt-free suspension is composed of just charged colloidal particles and the added counterions that counterbalance their surface charge. In a very recent paper [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] we presented a model for the equilibrium electric double layer for this kind of suspensions considering the size of the counterions, and now we extend this work to analyze the response of the suspension under a static external electric field. The numerical results show the high importance of such corrections for moderate to high particle charges, especially when a region of closest approach of the counterions to the particle surface is considered. The present work sets the basis for further theoretical models with finite ion size corrections, concerning particularly the ac electrokinetics and rheology of such systems.  相似文献   

5.
The equilibrium electric double layer (EDL) that surrounds colloidal particles is essential for the response of a suspension under a variety of static or alternating external fields. An ideal salt-free suspension is composed of charged colloidal particles and ionic countercharges released by the charging mechanism. Existing macroscopic theoretical models can be improved by incorporating different ionic effects usually neglected in previous mean-field approaches, which are based on the Poisson-Boltzmann equation (PB). The influence of the finite size of the ions seems to be quite promising because it has been shown to predict phenomena like charge reversal, which has been out of the scope of classical PB approximations. In this work we numerically obtain the surface electric potential and the counterion concentration profiles around a charged particle in a concentrated salt-free suspension corrected by the finite size of the counterions. The results show the high importance of such corrections for moderate to high particle charges at every particle volume fraction, especially when a region of closest approach of the counterions to the particle surface is considered. We conclude that finite ion size considerations are obeyed for the development of new theoretical models to study non-equilibrium properties in concentrated colloidal suspensions, particularly salt-free ones with small and highly charged particles.  相似文献   

6.
A theory is proposed for the dynamic electrophoretic mobility mu(omega) of spherical colloidal particles in a salt-free medium containing only counterions in an oscillating electric field of frequency omega. The dynamic mobility depends on the frequency omega of the applied electric field and on the particle volume fraction as well as on the particle surface charge. It is found that as in the case of the static electrophoretic mobility mu(0) in salt-free media, there is a certain critical value of the particle surface charge separating two cases, that is, the low-surface-charge case and the high-surface-charge case (in the latter case the counterion condensation takes place near the particle surface). For the low-surface-charge case, the dynamic mobility agrees with that of a sphere in an electrolyte solution in the limit of very low electrolyte concentrations kappaa-->0 (Hückel's limit), where kappa is the Debye-Hückel parameter and a is the particle radius. For the high-surface-charge case, however, the dynamic mobility becomes constant independent of the particle surface charge, because of the counterion condensation effects. A simple expression for the ratio mu(omega)/mu(0) applicable for all cases is given.  相似文献   

7.
Ren H. Luo  Huan J. Keh 《Electrophoresis》2021,42(21-22):2134-2142
The electrophoresis and electric conduction of a suspension of charged spherical particles in a salt-free solution are analyzed by using a unit cell model. The linearized Poisson-Boltzmann equation (valid for the cases of relatively low surface charge density or high volume fraction of the particles) and Laplace equation are solved for the equilibrium electric potential profile and its perturbation caused by the imposed electric field, respectively, in the fluid containing the counterions only around the particle, and the ionic continuity equation and modified Stokes equations are solved for the electrochemical potential energy and fluid flow fields, respectively. Explicit analytical formulas for the electrophoretic mobility of the particles and effective electric conductivity of the suspension are obtained, and the particle interaction effects on these transport properties are significant and interesting. The scaled zeta potential, electrophoretic mobility, and effective electric conductivity increase monotonically with an increase in the scaled surface charge density of the particles and in general decrease with an increase in the particle volume fraction, keeping each other parameter unchanged. Under the Debye-Hückel approximation, the dependence of the electrophoretic mobility normalized with the surface charge density on the ratio of the particle radius to the Debye screening length and particle volume fraction in a salt-free suspension is same as that in a salt-containing suspension, but the variation of the effective electric conductivity with the particle volume fraction in a salt-free suspension is found to be quite different from that in a suspension containing added electrolyte.  相似文献   

8.
A relation between the dynamic electrophoretic mobility of spherical colloidal particles in a concentrated suspension and the colloid vibration potential (CVP) generated in the suspension by a sound wave is obtained from the analogy with the corresponding Onsager relation between electrophoretic mobility and sedimentation potential in concentrated suspensions previously derived on the basis of Kuwabara's cell model. The obtained expression for CVP is applicable to the case where the particle zeta potential is low, the particle relative permittivity is very small, and the overlapping of the electrical double layers of adjacent particles is negligible. It is found that CVP shows much stronger dependence on the particle volume fraction φ than predicted from the φ dependence of the dynamic electrophoretic mobility. It is also suggested that the same relation holds between the electrokinetic sonic amplitude of a concentrated suspension of spherical colloidal particles and the dynamic electrophoretic mobility. Copyright 1999 Academic Press.  相似文献   

9.
Approximate expressions are derived for the electrophoretic mobility of dilute cylindrical colloidal particles in a salt-free medium containing only counterions. The cylinder is assumed to be infinitely long. It is shown that as in the case of a spherical particle, there is a certain critical value of the particle surface charge separating two cases. When the particle surface charge is lower than the critical value (case 1), the electrophoretic mobility increases with increasing particle surface charge per unit length. When the particle surface charge is higher than the critical value (case 2), the mobility becomes constant (for a cylinder in a transverse field) or the increase in the electrophoretic mobility with the particle surface charge becomes suppressed (for a cylinder in a tangential field). These phenomena are caused by the effect of counterion condensation in the vicinity of the particle surface. The critical value of the particle charge is essentially independent of the particle volume fraction phi for the dilute case, unlike the case of a sphere, in which case the critical charge value is proportional to ln(1/phi).  相似文献   

10.
11.
Yi C. Lai  Huan J. Keh 《Electrophoresis》2021,42(21-22):2126-2133
The startup of electrophoretic motion in a suspension of spherical colloidal particles, which may be charged with constant zeta potential or constant surface charge density, due to the sudden application of an electric field is analytically examined. The unsteady modified Stokes equation governing the fluid velocity field is solved with unit cell models. Explicit formulas for the transient electrophoretic velocity of the particle in a cell in the Laplace transforms are obtained as functions of relevant parameters. The transient electrophoretic mobility is a monotonic decreasing function of the particle-to-fluid density ratio and in general a decreasing function of the particle volume fraction, but it increases and decreases with a raise in the ratio of the particle radius to the Debye length for the particles with constant zeta potential and constant surface charge density, respectively. On the other hand, the relaxation time in the growth of the electrophoretic mobility increases substantially with an increase in the particle-to-fluid density ratio and with a decrease in the particle volume fraction but is not a sensitive function of the ratio of the particle radius to the Debye length. For specified values of the particle volume fraction and particle-to-fluid density ratio in a suspension, the relaxation times in the growth of the particle mobility in transient electrophoresis and transient sedimentation are equivalent.  相似文献   

12.
A theory is presented for the electrophoretic mobility mu of dilute spherical soft particles (i.e., polyelectrolyte-coated particles) in salt-free media containing only counterions. As in the case of other types of particles (rigid particles and liquid drops) in salt-free media, there is a certain critical value of the particle charge separating two cases, the low-surface-charge case and the high-surface-charge case. For the low-charge case, the mobility is proportional to the particle charge and coincides with that of a soft particle in an electrolyte solution in the limit of very low electrolyte concentrations kappa-->0 (Hückel's limit), where kappa is the Debye-Hückel parameter. For the high-charge case, however, mu becomes essentially constant, independent of the particle charge, due to the counterion condensation effect.  相似文献   

13.
In this work we analyze the dielectric properties of dilute colloidal suspensions of nonconducting spherical particles with a thin electrical double layer from experimental data obtained by performing impedance spectroscopy experiments over a broad frequency range, from 20 Hz to 1 GHz. The electrode polarization correction was made by fitting a circuit model in the complex impedance plane (impedance spectrum) using a constant phase angle (CPA) element to fit the electrode polarization in series with the sample impedance. This simple procedure is found to be effective in eliminating the electrode contribution. The dielectric response shows two different dispersions, the alpha relaxation (counterion relaxation) that occurs at low kilohertz frequencies, and the delta relaxation (Maxwell-Wagner effect) found in the MHz range. These are reasonably well fitted over a broad frequency range by the theoretical expressions given by a simplified standard model (not including anomalous conduction) and a generalized model (including anomalous conduction) for the low-frequency dispersion, plus Maxwell-Wagner-O'Konski theory for the delta relaxation in the mid-frequency range. An analysis was also made of the need to include, for these latices, the effects of ion mobility in the Stern layer in order for the values of the zeta-potential obtained from electrophoretic and dielectric data to be compatible with each other.  相似文献   

14.
A general expression as well as approximate expressions are derived for the electrophoretic mobility of dilute spherical colloidal particles in a salt-free medium containing only counter ions. It is shown that there is a certain critical value of the particle surface charge. When the particle surface charge is lower than the critical value, the electrophoretic mobility is proportional to the particle surface charge or the particle zeta potential, following Hückel's formula. When the particle surface charge is higher than the critical value, the electrophoretic mobility becomes independent of the particle surface charge. This is due to the effect of counter ion condensation in the vicinity of the particle surface.  相似文献   

15.
This paper presents a detailed analysis of the electro-optic behavior of suspensions of noninteracting monodisperse beta-FeOOH particles. The electro-optic parameters are determined for aqueous suspensions of the oxide particles and the influences of surface charge and Debye layer thickness are verified. Since the conventional method of frequency analysis is inconsistent in the low-frequency range, new electro-optic parameters are introduced to define the frequency variation of the effects. Electric polarizability is determined with precision to a constant, and its relative variations are followed. As reported for other oxides, electric polarizability correlates with charge variations in the diffuse part of the particle surface electric layer, and its relaxation frequency increases with surface charge density, indicating a Maxwell-Wagner type of surface polarization. The alternating component of the responses yields particle relaxation frequency and the phase shift of the responses at this frequency. For all studied samples the phase shift at particle relaxation frequency is 45 degrees. The relative changes in the steady component of the responses in the low-frequency range are followed by field intensity curves at characteristic frequencies of the samples. Electrophoretic rotation is the process consistent with our data for the low-frequency effect. The results show that it is enhanced by the combined actions of low or slowly relaxing polarizability and significant electrophoretic mobility.  相似文献   

16.
The radiowave dielectric properties of organothiol monolayer-protected Au and Ag metallic nanoparticles have been investigated in the frequency range of 10 kHz to 2 GHz, where a dielectric relaxation, due to the polarization of the ionic atmosphere at the aqueous interface, occurs. The simultaneous measurement of the particle size, by means of dynamic light scattering technique, and of the particle electrical charge, by means of laser microelectrophoresis technique, allow us to describe the whole dielectric behavior at the light of the standard electrokinetic model for charged colloidal particles. Au and Ag metallic nanoparticles experience a large charge renormalization, in agreement with the counterion condensation effect for charged spherical colloidal particles. The value of the effective valence Z(eff) of each nanoparticle investigated has been evaluated thanks to the dielectric parameters of the observed relaxation process and further confirmed by direct current electrical conductivity measurements. All in all, these results provide support for the characterization of the electrical interfacial properties of metallic nanoparticles by means of dielectric relaxation measurements.  相似文献   

17.
By extending an approximate theory of the electrophoretic mobility of dilute spherical colloidal particles in a salt-free medium containing only counterions (H. Ohshima, J. Colloid Interface Sci. 248 (2002) 499--503), a systematic numerical method is given for the calculation of the electrophoretic mobility, which is based on an iteration method. We assume that each sphere is surrounded by a spherical free volume, within which counterions are distributed so that electro-neutrality is satisfied. The electrophoretic mobility is found to be determined mainly by the pressure due to the counterions at the outer surface of the free volume. It is shown how the mobility values deviate from those expected from Hückel's formula for high particle charges or zeta potentials because of the counterion condensation effect.  相似文献   

18.
Because electroacoustic techniques are gaining interest in many fields of colloid science, a number of theories dealing with the phenomenon of electrophoresis in high-frequency (on the order of the MHz) electric fields have been developed. In the present work we propose a straightforward derivation of a simple formula for the dynamic mobility of colloidal particles in mildly concentrated systems. Starting with a simple expression for the electrophoretic mobility in dilute suspensions, given as a function of the zeta potential and of the dipole coefficient, we introduce successive corrections related to: (i) the back flow of fluid induced by the electrophoretic motion of the particles; (ii) the electrostatic interactions among particles; (iii) the difference between the macroscopic and the external electric fields; (iv) the difference between the zero-momentum and the laboratory reference frames. Considering furthermore that the frequency dependence of the dipole coefficient is due to the Maxwell-Wagner-O'Konski double-layer relaxation, we obtain a mobility expression that compares well with other (semi)analytical models and (in proper conditions) with numerical cell-model calculations. However, its main merit is that it allows to understand, to a large extent, the physical origin of the frequency and volume fraction dependences of the dynamic mobility.  相似文献   

19.
The electrophoresis in a monodisperse suspension of dielectric spheres with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations, which govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution surrounding the charged sphere in a unit cell, are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. Analytical expressions for the electrophoretic mobility of the colloidal sphere in closed form correct to O(zeta) are obtained. Based on the solution of the electrokinetic equations in a cell, a closed-form formula for the electric conductivity of the suspension up to O(zeta(2)) is derived from the average electric current density. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made for both the electrophoretic mobility and the electric conductivity. Copyright 2001 Academic Press.  相似文献   

20.
A general theory is developed for the electrophoretic mobility of spherical soft particles (i.e., spherical hard colloidal particles of radius a coated with a layer of polyelectrolytes of thickness d) in concentrated suspensions in an electrolyte solution as a function of the particle volume fraction φ on the basis of Kuwabara's cell model. In the limit d-->0, the mobility expression obtained tends to that for spherical hard particles in concentrated suspensions, whereas in the limit a-->0, it becomes that for spherical polyelectrolytes (charged porous spheres with no particle core). Simple approximate analytic mobility expressions are derived for the case where relaxation effect is negligible. It is found that in practical cases, the φ dependence of the mobility is negligible for da, the mobility strongly decreases with increasing φ. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号