首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micro magnetic structure in CoCrTaPtB recording media with Hc>3 kOe was studied by magnetic force microscope and LLG simulation. Two types of the characteristic magnetic structure were observed. One is the convergent-type magnetic structure, which is observed as localized magnetic cluster on bit. The other is the vortex structure, which is responsible for the recording bit peroration. These micro magnetic structures cause the medium noise in high-density recording and must be suppressed by adjusting coercive force Hc and inter-granular interaction to explore high density recording media.  相似文献   

2.
Bit-patterned media based on a single-bit-per-island may be a promising candidate for perpendicular magnetic recording at the Tb/in2 level because they could provide a lower noise and higher density. The understanding of magnetization reversal processes in such patterned media is important. In this work, the range of single domain island size based on Co/Pd bit-patterned media was determined. Demagnetization effect, dipolar interactions and switching field distribution (SFD) for bit-patterned media were quantitatively studied by the simulation based on Landau-Lifshitz-Gilbert equation. The total hysteresis loops and SFD were comparable with the experiment ones. The SFD increased from 2σ=1.2 kOe (as the calculated intrinsic SFD) to the experimental value of 1.9 kOe due to dipolar interactions which is in a good agreement with the experimental results (2.0 kOe). Optimized patterned structure with a minimized SFD and maximized data storage densities was found to have an island size of 10 nm and islands separation of 20 nm. The calculated ratio of SFD/Hc (Hc: the coercivity) is 9.2%, which is below the threshold of 10% for 1 Tb/in2 pattern media.  相似文献   

3.
We introduce our recent experimental results for three blocked layers for currently used perpendicular recording media; a recording layer (RL: for recording), a soft magnetic underlayer (SUL: magnetic flux path in writing), and a nonmagnetic intermediate layer (NMIL: underlayer of RL and separation layer between RL and SUL). For the NMIL, uniaxial crystallographic symmetry is an essential requirement for suppression of variant growth of magnetic grains in granular-type RL. From this view point, AlN with wurtzite structure and materials with pseudo-hcp structure, which means fcc structure with stacking faults, were found to be effective. For the SUL, disordered hcp CoIr with negative Ku were found to well suppress both spike noise and track erasure due to a wide distribution of magnetic flux under the return yoke in writing and formation of a Neel wall instead of a Bloch wall in the SUL. For the RL, positive-/negative-Ku stacked media with incoherent switching mode was found to be effective in order to solve the recent write-ability problem for high Ku RL material with high thermal stability. Applying all these items, an advanced medium concept with the stacking structure of “CoPtCr-oxide/CoIr-oxide/CoIr/pseudo-hcp nonmagnetic layer/substrate” is very promising from the view point of (1) switching field reduction of a RL with high Ku material, (2) conventional amorphous SUL free, and (3) conventional NMIL free.  相似文献   

4.
An SmCo5 alloy is a promising candidate for ultra-high density magnetic recording media because of its strong uniaxial magnetocrystalline anisotropy, whose constant, Ku, is more than 1.1×108 erg/cm3. Recently, we successfully obtained high perpendicular magnetic anisotropy for a sputter-deposited SmCo5 thin film by introducing a Cu/Ti dual underlayer. However, it is necessary to improve magnetic properties and read/write (R/W) characteristics for applying SmCo5 thin films to perpendicular magnetic recording media. In this study, we focused on reduction of magnetic domain size and change of a magnetization reversal process of SmCo5 perpendicular magnetic thin films by introducing carbon (C) atoms into the constituent Cu underlayer. The magnetic domain size became small and the ratio of coercivity (Hc) against magnetic anisotropy (Hk) which is an index of the magnetization reversal process was increased by adding C atoms. We also evaluated the R/W characteristics of SmCo5 double-layered media including C atoms. The medium noise was decreased and signal-to-noise ratio increased by introducing the C. The addition of C into the Cu underlayer is effective for changing the magnetization reversal process, reducing medium noise and increasing SNR.  相似文献   

5.
Bit patterned media (BPM) recording is a candidate for extremely high density magnetic recording. A micromagnetic model is built up to analyze the phase diagram of the correct-write-in condition in BPM above 2 Tb/in.2 fabricated by lithography or ion irradiation methods. The target of the study is to acquire the relationship between the recording performance and the magnetic properties of the media. The medium includes the polycrystalline grains and grain boundary. In BPM fabricated by lithography with FCT structure, two phase diagrams of the correct-write-in condition are found for the anisotropy angular distribution Δθ, the ratio of tetragonal anisotropy K22 to uniaxial anisotropy K1 and the uniaxial anisotropy distribution ΔK1. In BPM fabricated by ion irradiation methods, two phase diagrams of the correct-write-in condition are analyzed for the ratio of saturation magnetization Ms/Ms, anisotropy field Hk/Hk and the exchange field Hex/Hex in the ion irradiated region and the bit islands.  相似文献   

6.
The time dependence of remanence coercivity and thermal stability were investigated for hard/soft-stacked media consisting of a magnetically hard granular layer underneath a very thin soft layer with a large saturation magnetization, Ms. The values of remanence coercivity at measurement times t′=103 and 10−5 s (pulse field) were measured, and defined as Hr and HrP. The remanence coercivity on the recording time scale, Hr (1 ns), and the energy barrier, ΔE/kT, were evaluated by fitting Hr and HrP to Sharrock's equation taking into account the power law variation of the energy barrier, n. The value of Hr (1 ns) for a (Co–Pt)–SiO2 (9 nm)/Co–SiO2 (2 nm) stacked medium with an interfacial coupling control layer was about 9 kOe, which was less than half of that of a (Co–Pt)–SiO2 (9 nm) conventional medium (=21.3 kOe). The value of ΔE/kT for the stacked medium was about 111 (n=0.7), and was not significantly different from the conventional medium. Moreover, no significant difference in the rate of decrease of Hr with increasing temperature was observed between media with and without interlayers. These results indicate that the use of a thin soft layer with high Ms was effective at significantly reducing Hr with no notable change in thermal stability.  相似文献   

7.
Granular-type media with thin Ru intermediate layer were prepared on a highly oriented high-Bs FeCo soft underlayer (SUL). A CoPt–TiO2 recording layer on a Ru intermediate layer of only 2 nm had high-crystal orientation, high Hc of 6.5 kOe, and a high squareness ratio (SQ) of 0.99. The magnetic property of the SUL was also good. The recording performance was measured for the media with different Ru intermediate thicknesses by using a single-pole-type (SPT) head. The media had large reproduced output even for the Ru intermediate layer thickness of 2 nm.  相似文献   

8.
In the present study, the effects of B2O3 addition on the remanence properties of barium ferrite magnets are examined. The relationship between isothermal magnetization remanence MR(H) and demagnetization remanence MD(H) for non-interacting single domain particles, MD(H)=MR(Hmax)−2MR(H), was used in order to investigate the interactions between particles. We have found that remanence magnetization MR increased by 40% in magnitude with B2O3 addition in addition to the weakened couplings between particles. The B2O3 addition seems to supply the required conditions for usage of these materials in the magnetic recording media.  相似文献   

9.
Design of patterned media for an areal density of 1 Tbit/in2 with thermal stability is presented based on perpendicular MH loops of the media. Required perpendicular magnetic anisotropy was estimated to be achieved with known materials. However, it is indicated that magnetostatic interaction between the dots becomes a limiting factor for achieving higher densities. Recording simulation using a Karlqvist pole head on the designed media exhibited possibility of the recording of 1 Tbit/in2. Shift margin of the write head in the cross-track direction was found to be increased with elongated dots in the down-track direction. Recording simulation with an FEM-analyzed field of a side-shielded multi-surface pole head exhibited successful recording with increased cross-track shift margins as well as the effect of the elongated dot shape.  相似文献   

10.
A model of the critical state of a Josephson medium is developed on the basis of the Sonin theory of averaged Josephson medium. The model is used to explain the experimental data on the differential magnetic susceptibility χd (H) and magnetoresistance R(H) of polycrystalline YBa2Cu3O7?x samples in fields H<100 Oe.  相似文献   

11.
Two different approaches to reduce the intermediate layer (IL) thickness in perpendicular recording media are proposed. Such a reduction in IL thickness could lead to improvement in writability and recording performance. The first approach involved the introduction of a magnetic intermediate layer (MIL), to obtain C-axis growth. Media with CoCr alloy layer as the MIL were studied. Reasonably good C-axis growth with a Δθ50 of about 3.8° could be obtained for MIL thickness of about 10 nm. Noise could be controlled by introducing exchange-breaking layers. The other approach involved the use of crystalline soft underlayers (SUL) to obtain suitable growth conditions for the recording layers. For this purpose, CoFeTaCr alloys with a FCC(1 1 1) texture were prepared. A good C-axis dispersion in the recording layer with a Δθ50 of about 3.1° could be obtained for IL thickness of about 5 nm. The present study indicates that the recording medium deposited on crystalline SUL is relatively noisier than that deposited on amorphous SUL. Reducing the noise of the crystalline SUL is a way towards higher areal densities.  相似文献   

12.
The distribution of easy axis orientation in perpendicular media is of technological importance because it affects the value of S* (see Fig. 1), which quantifies the switching field distribution (SFD) and hence partially determines the data density achievable on a given medium. The distribution is controlled by the crystallographic orientation of grains and factors such as intergranular exchange and dipolar coupling. Due to strong demagnetising fields in the perpendicular orientation, traditional measurements of remanence as a function of angle are difficult to interpret and have required the use of large-scale computational models. In this work we have utilised the variation of coercivity HC with angle, which has the advantage that at HC the global demagnetising field is zero. Additionally, since such materials follow essentially the Stoner–Wohlfarth mode of reversal, the variation of HC with angle, HC(θ), is much greater than that for the remanence. We find that for (CoCrPt)1−x(SiO2)x, where the level of exchange coupling is controlled, the distribution of magnetic easy axes is narrower when the exchange coupling is reduced, but dipolar coupling between the grains is strong and affects the magnetisation reversal significantly.  相似文献   

13.
In order to achieve high-density recording, the detailed behavior of thermal degradation should be investigated. In this paper, the degradation of magnetization of high-density recording medium is examined using the 3-D finite element method (FEM) combined with the modeling of Stoner–Wohlfarth (SW) particles and Neel–Arrhenius switching probability. It is shown that the anisotropy field Hk suppressed the thermal degradation and the saturation magnetization Ms enhances it. The thermal degradation is also changed by the amplitude of magnetization.  相似文献   

14.
A three-dimensional micromagnetic model with non-uniform grain size distribution has been built up to study the magnetization process in FePt L10 perpendicular media. A 3D model of a single FePt magnetic grain is also set up for comparison. The high magneto-crystalline anisotropy Ku results in a short exchange length lex in FePt nanograins. Therefore a magnetic grain is divided into smaller grids on the order of lex. The simulated perpendicular and longitudinal loops are consistent with experiments, and it is explained why the measured perpendicular Hc is relatively smaller compared with the saturation field of the longitudinal loop in the FePt perpendicular medium.  相似文献   

15.
Hard/soft-magnetic composite pillar array medium is proposed for ultra-high-density recording media. Magnetization reversal process for a single hard/soft-magnetic composite pillar in the medium is calculated using the Landau–Lifshitz–Gilbert equation. Magnetization reversal of the soft-magnetic unit helps the magnetization reversal for the hard-magnetic unit, and the effective coercivity for the hard-magnetic unit is greatly reduced. Thereby saturation recording to the high-Ku-hard-magnetic material used for perpendicular magnetic recording will be realizable.  相似文献   

16.
Vacuum sublimed thin films of the blue dye hydrogen phthalocyanine (H2Pc) were incorporated into various optical recording structures. The dye was shown to be thermally, hydrolytically, and oxidatively stable. In all cases, the writing mechanisms are dependent on the sublimation of H2Pc. Several recording structures which take advantage of the sublimation property of H2Pc are demonstrated, including pit forming and bubble forming media. These H2Pc-based optical recording structures show very high optical contrast and low writing threshold energies. In addition, very thin films (50–75Å) of H2Pc were incorporated into a tellurium-based medium, which significantly enhanced the writing contrast observed in that medium.  相似文献   

17.
The bit-error rate (BER) performance of the generalized partial response maximum likelihood with autoregressive (GPRML-AR) channel model system in perpendicular magnetic recording (PMR) channel with thermal decay is obtained. The 128/130(0,16/8) run-length-limited (RLL) code is used as a recording code. The GPR channel consists of the PR1 channel followed by the reduction circuit of predicted noise. The BER performance is evaluated by computer simulation using a thermal decay model. The model has been obtained by using an approximate equation that represents amplitude degradation of the reproducing waveform with elapsed time based on the experimental data for CoPtCr-SiO2 PMR media. The Viterbi detector with an AR channel model is employed. Furthermore, long-term degradation of the required SNR to achieve a BER of 10−4 with elapsed time is obtained and the performance is compared with that of PR1ML system. The results show that the poorer the thermal stability of the medium becomes, the larger the SNR gain of the GPR1ML-AR system over the PR1ML system becomes. The SNR gain also increases with elapsed time.  相似文献   

18.
SmCo5 alloy is a promising candidate for ultra-high-density perpendicular magnetic recording (PMR) media because of its high uniaxial magnetocrystalline anisotropy Ku of more than 1.1×108 erg/cm3. Previously, we successfully achieved high Ku in a sputter-deposited SmCo5 thin film by introducing a Cu/Ti dual underlayer. However, in order to apply the SmCo5 films to practical PMR media, it is necessary to decrease medium noise. A granulated magnetic film comprising of small and magnetically decoupled grains is effective in reducing the medium noise. In this paper, we have proposed a new granular film that is fabricated by partial thermodiffusion of Cu between the Sm-Co continuous layer and the Cu underlayer, which is granulated using compositional segregation caused by the addition of Ta2O5. We have analyzed the magnetic properties, magnetic domain size, and magnetization reversal process of the proposed SmCo5 film. The magnetic domain size decreased and the magnetization reversal process changed from the magnetic-wall-motion mode to a coherent rotation mode to some extent on isolation of magnetic grains. The read/write characteristics of granulated SmCo5 double-layered media were also evaluated. The medium noise decreased and the signal-to-noise ratio increased for the granulated double-layered (PMR) medium.  相似文献   

19.
The effect of intermediate layer (IL) thickness on crystallographic texture and magnetic properties of CoCrPtSiO2 granular perpendicular recording media was investigated with switching field distribution (SFD) as the focus. Even though the c-axis orientation of the Co-based recording layer (RL) broadens with the reduction of IL thickness, the SFD becomes narrower. This result demonstrates that the intrinsic SFD is not directly dependent on c-axis orientation of the recording layer but instead dependent on the magnitude of exchange coupling. It is thus possible to have a medium with thin IL and narrow SFD. This is desirable for bit-patterned media (BPM), where highly exchange-coupled grains are required.  相似文献   

20.
K.H. Lee 《Physica A》2008,387(26):6657-6662
Using the context of routing efficiency in a complex scale-free network, we study the problem of how a limited amount of resources should be distributed to the nodes in a network so as to achieve a better performance, without imposing a certain pre-determined distribution. A dynamical reallocation scheme, based on the willingness of sharing resources with a busy neighboring node, is proposed as a tool for allowing an initially uniform distribution of resource to evolve to a high-performance distribution. The resulting distribution gives a critical packet generation rate Rc that is significantly enhanced when compared with evenly distributing the same amount of resources on the nodes. There emerges a relation between the resource allocated to a node and the degree of the node in the form of . The exponent γ is found to vary with the packet generation rate R. For R<Rc, γ takes on a high value and shows a weak dependence on R; for R>Rc, γ drops with R; and for R?Rc, γ saturates. For good performance, the values of γ indicate a behavior different from that linear in k, as often assumed in previous studies. The resource distribution is also analyzed in terms of the betweenness of the nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号