首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alloys of composition Nd10.8Dy0.75Tb0.75Fe79.7−xCoxZr0.8Nb0.8Cu0.4B6.0 (x=0, 3, 6, 9, 12, 15) were prepared by melt spinning at 22 m/s and subsequent annealing. Phase analysis revealed single-phase materials. Magnetic structure and remanence analysis indicated strong exchange coupling between neighboring grains in all samples. The remanence polarization Jr and maximum energy product (BH)max increased first and then decreased with further increasing Co content x although the intrinsic coercivity Hci decreased with increasing x. The increase in remanence polarization Jr by the substitution of Co for Fe is mainly caused by the increase in the saturation polarization Js rather than by the improvement of exchange-coupling interactions. Optimum magnetic properties with Jr=1.041 T, Hci=944.9 kA/m and (BH)max=155.1 kJ/m3 were achieved for x=12 ribbons. The mechanism of magnetic hardening in all samples was of pinning type by analyzing initial magnetization and the dependence on applied magnetizing field of the coercivity and remanence.  相似文献   

2.
In this paper it is demonstrated that the second phase transition of Gd2In intermetallic compound gets eliminated by diluting Gd2−x(LaY)xIn at a critical composition of x=0.5. The exchange coupling for intra-cluster interactions is estimated in the correlation ranges of 3.3 Å<RC<3.6 Å (anisotropic source) and for inter-cluster interactions in the ranges of RC>4 Å where the correlation length is defined as . The sign and strength of the exchange coupling are identified by the eigenvalues λ(k) and are obtained from zeros of the 4×4 matrix of JijRR along the three directions of the reciprocal lattice for each dilution (x=0.25, 0.5, 0.75, 1). The transition temperature is calculated using the minimum eigenvalue λmin (k=0, π) which agrees with the experiment. Magnetic field and temperature dependence of the magnetization and electrical resistivity measurements show that: (i) Elimination of the AFM phase is caused by breaking of some FM short-range exchange couplings, and (ii) Conduction electrons order antiferromagnetically at low temperatures and ferromagnetically at high temperatures.  相似文献   

3.
A three-dimensional micromagnetic model with non-uniform grain size distribution has been built up to study the magnetization process in FePt L10 perpendicular media. A 3D model of a single FePt magnetic grain is also set up for comparison. The high magneto-crystalline anisotropy Ku results in a short exchange length lex in FePt nanograins. Therefore a magnetic grain is divided into smaller grids on the order of lex. The simulated perpendicular and longitudinal loops are consistent with experiments, and it is explained why the measured perpendicular Hc is relatively smaller compared with the saturation field of the longitudinal loop in the FePt perpendicular medium.  相似文献   

4.
We report on results of X-ray powder diffraction, magnetization and specific heat measurements of the pseudo-ternary (Ce1−xLax)PdIn2 system with x=0; 0.2; 0.4 and 0.6. The results show a linear increase of the unit cell volume and a reduction of the ferromagnetic transition as La content increases. The Debye temperature, Sommerfeld coefficient and crystal field parameters were estimated from specific heat data, and are found to be weakly dependent of the Ce concentration. Also, the variation of magnetic entropy at TC is only weakly dependent on xS≅0.92Rln2) indicating that TK/TC is approximately constant along the series. The TC and TK behaviors are explained by the variation of the exchange parameter due to the volume change when Ce is replaced by La. Our results indicate that the chemical pressure is the dominant effect rather than the chemical disorder for determining the physical proprieties of the (Ce1−xLax)PdIn2 system.  相似文献   

5.
Magnetization curves with various magnetic field orientations and nanowire diameters were measured at room temperature. The measured coercivity as a function of angle (θ) between the field and wire axis reveals that the coercivity decreases with increasing value of θ for various nanowires. Theoretically, based on Monte Carlo simulation we investigated the magnetization reversal modes of the Co1−xCux nanowires and obtained also the θ dependence of the coercivity. Comparing the simulated with the experimental results, we find that the magnetocrystalline anisotropy plays an important role on the magnetic properties of Co1−xCux nanowires, and the magnetization reversal process in the Co1−xCux nanowires could not be understood by the classical uniform rotation mode in the chain-of-sphere model.  相似文献   

6.
The critical parameters provide important information concerning the interaction mechanisms near the paramagnetic-to-ferromagnetic transition. In this paper, we present a thorough study for the critical behavior of La0.7A0.3(Mn1−xBx)O3 (A=Sr; B=Ti and Al; x=0.0 and 0.05) polycrystalline samples near ferromagnetic-paramagnetic phase transition temperature by analyzing isothermal magnetization data. We have analyzed our dc-magnetization data near the transition temperature with the help of the modified Arrot plot, Kouvel-Fisher method. We have determined the critical temperature TC and the critical parameters β, γ and δ. With the values of TC, β and γ, we plot M×(1−T/TC)β vs. H×(1−T/TC)γ. All the data collapse on one of the two curves. This suggests that the data below and above TC obey scaling, following a single equation of state. Critical parameters for x=0 and xTi=0.05 samples are between those predicted for a 3D-Heisenberg model and mean-field theory and for xAl=0.05 samples the values obtained for the critical parameters are close to those predicted by the mean-field theory.  相似文献   

7.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

8.
Using first-principles total energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural, electronic and thermodynamic properties of potassium halides (KClxBr1−x, KClxI1−x and KBrxI1−x), with x concentrations varying from 0% up to 100%. The effect of composition on lattice constants, bulk modulus, band gap and dielectric function was investigated. Deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the three alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and coworkers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram.  相似文献   

9.
The magnetizations of Zr76Ni24 metallic glass and hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses have been measured in the temperature range 10-300 K and magnetic fields up to 2 T for various dopant concentrations (x=0, 0.024, 0.043, 0.054). It is found that the samples are paramagnetic and magnetic susceptibility at room temperature, χ(300 K), shows a nonmonotonic behaviour upon hydrogenation. The values of χ(300 K) of the hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses are reduced with increase in hydrogen content up to x=0.043, whereas for x=0.054, an enhancement of χ(300 K) has been revealed. The magnetic susceptibility is weakly temperature dependent down to 110 K, below which an increase is observed. A shallow minimum exists between 90 and 120 K. The form and magnitude of the observed temperature dependence of the magnetic susceptibility are well accounted for by the sum of the quantum corrections to the magnetic susceptibility. Hydrogen reduces the electronic diffusion constant and influences strongly the quantum interference at defects, slowing down the spin diffusion and enhancing the magnetic susceptibility in the temperature range from 110 down to 10 K.  相似文献   

10.
The high-temperature series expansions method applied in the systems Mn1−xCuxCr2S4 in the range 0?x?1. The exchange interactions and the magnetic exchange energies are calculated by using the probability law. The high-temperature series expansions have been applied in the spinel Mn1−xCuxCr2S4 systems, combined with the Padé approximants method, to determine the magnetic phase diagram, i.e. TC versus dilution x. The critical exponent associated with the magnetic susceptibility (γ) is deduced. The obtained value of γ is insensitive to the dilution ratio x and may be compared with other theoretical results based on 3D Heisenberg model.  相似文献   

11.
The variation of the applied field results in a subsequent change of magnetization with time. There is a relationship between the coercivity (Hc), as the equilibrium characteristic of the system, and its magnetic stability (1/S), as a parameter characterizing the time dependence. 1/S as a function of Hc has been measured and studied for different Fe1−xCox samples. We synthesized several samples with different values of x by applying various magnetic fields during the grains’ growth, and observed a linear relationship between 1/S and Hc.  相似文献   

12.
Magnetic and magnetization properties of fcc Co1−xPtx (x?0.3) alloy nanowires fabricated by electrodeposition into self-synthesized anodic alumina templates are investigated. Magnetization curves, measured for varying wire geometries, show a crossover of easy axis of magnetization from parallel to perpendicular to the nanowire axis as a function of the diameter and length. The measured values of coercivity (Hc) and remanent squareness (SQ) of CoPt nanowire arrays, as a function of angle (θ) between the field and wire axis, support the crossover of easy axis of magnetization. The curling mode of the magnetization reversal process is observed for CoPt nanowire arrays. At low temperatures, the easy axis for magnetization of the nanowires is observed to deviate from the room-temperature orientation.  相似文献   

13.
It is expected that joint existence of ferromagnetic properties and ferroelectric structural phase transition in diluted magnetic semiconductors IV-VI leads to new possibilities of these materials. Temperature of ferroelectric transition for such crystals can be tuned by the change of Sn/Ge ratio. Magnetic susceptibility, Hall effect, resistivity and thermoelectric power of Ge1−xySnxMnyTe single crystals grown by Bridgeman method (x=0.083-0.115; y=0.025-0.124) were investigated within 4.2-300 K. An existence of FM ordering at TC∼50 K probably due to indirect exchange interaction between Mn ions via degenerated hole gas was revealed. A divergence of magnetic moment temperature dependences at T?TC in field-cooled and zero-field-cooled regimes is obliged to magnetic clusters which are responsible for superparamagnetism at T>TCTf (freezing temperature) and become ferromagnetic at TC arranging spin glass state at T<TfTC. Phase transition of ferroelectric type at T≈46 K was revealed. Anomalous Hall effect which allows to determine magnetic moment was observed.  相似文献   

14.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

15.
We performed the magnetization measurement on Ho1−xDyxNi2B2C single crystals (x=0.1, 0.2, 0.3, 0.4, and 0.6) with magnetic field applied perpendicular and parallel to the c-axis. But only for the magnetic field perpendicular to the c-axis, the increase of Dy3+ concentration affects the magnetically ordered states of HoNi2B2C compound and makes the phase diagram more complicated. The antiferromagnetic ordering state attributed to Dy3+ sublattice starts to appear from a case of x=0.2 and finally the magnetic phase diagram becomes analogous to that of DyNi2B2C as x is increased which is consistent with the neutron scattering result.  相似文献   

16.
Electron microscopy was employed to investigate the structure of magnetic field crystallized (Co1−xFex)89Zr7B4 alloys with only dilute Fe-contents (x=0, 0.025, 0.05, and 0.10). The x=0.025 and 0.05 alloys exhibit very large field induced anisotropies and multiple nanocrystalline phases (BCC, FCC, and HCP) surrounded by an intergranular amorphous phase. Correlation between the volume fraction crystallized and the measured value of HK suggests that the large KU values are associated with the crystalline phases that form. Multiple crystalline phases are present for the highest KU alloys and so the presence of FCC and/or HCP-type nanocrystals may be responsible for these observations. High-resolution transmission electron microscopy (HRTEM) illustrates a number of microstructural features including (1) high densities of stacking faults in many of the FCC and, in particular, the HCP-type nanocrystals, (2) infrequent BCC/FCC orientation relationships, and (3) nanocrystals with disordered or long period stacking sequences of close-packed planes. High densities of planar faults are suggested as a potential source of KU for the FCC and HCP-type nanocrystals, but the origin of the large values of KU found in dilute Fe-containing, Co-rich “nanocomposite” alloys is an area where further work is needed.  相似文献   

17.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

18.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

19.
The effects of Fe substitution on the structure, magnetic properties, magnetocaloric effect and positive magnetoresistance (MR) effect in antipervoskite compounds SnCMn3−xFex (x=0.05-0.20) have been investigated systematically. Partial substitution of Fe for Mn leads to the monotonic reduction in both the Curie temperature TC and saturated magnetization (MS). It can be attributed to the reduction of electronic density of state at the Fermi energy by Fe-doping. The maximum values of magnetic entropy change (−ΔSM) and positive MR gradually decrease as x increases, due to the broadening of magnetic phase transition. The refrigerant capacity increases initially with x≤0.05, then decreases gradually as x increases further, which is suggested to originate from the competition between the decreasing −ΔSM and broadening temperature span. Our result indicates that the chemical doping on Mn site is an effective method for manipulating the properties of antiperovskite compounds AXMn3.  相似文献   

20.
Hard magnetic Sm2Fe17Nx thin films were prepared by dc magnetron sputtering and subsequent nitrogenation process. The results show that the sputtering parameters determine the film composition, which determines the crystal structure and magnetic properties. When the gas pressure varies from 1.2 to 2.1 Pa and power varies from 40 to 60 W, higher Sm content (>11.3 at%) is obtained, giving rise to improved coercivity HC and remanence ratio MR/MS. The optimal HC of 2127.8 Oe and MR/MS of 0.53 are obtained when the gas pressure and power reach 1.2 Pa and 50 W, respectively. In addition, it is found that the pure single Sm2Fe17 phase can be observed when the ratio of Fe/Sm exceeds 7.1 by controlling the sputtering parameters to adjust the composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号