首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Chemically disordered face-centered cubic FePt nanoparticles (NPs) were synthesized via pyrolysis of iron(III)ethoxide and platinum(II)acetylacetonate. The surface ligands of these NPs were then exchanged from oleic acid to 2-aminoethanethiol (AET). The AET-capped FePt NPs were found to be well dispersed in water when pH<8, and the zeta potential was more than +30 mV when pH?7.  相似文献   

2.
(Fe48Pt52)100−x–(MgO)x films were used to examine the performance of a perpendicular percolated medium. Two underlayers, Pt(0 0 1)/Cr(0 0 2) and MgO(0 0 2), were used for comparison. The (Fe48Pt52)100−x–(MgO)x film with the MgO underlayer exhibits a strong preference to segregate at FePt grain boundaries. The microstructure with small closely packed MgO particles (2–4 nm) dispersed uniformly in the L10 FePt matrix was achieved in the Pt/Cr underlayered sample. Structural data reveal that the precipitate is crystallographically coherent with the surrounding L10 FePt phase and preserves good lattice alignment. Magnetic results indicate significant pinning behavior for those introduced non-magnetic columns with an enhanced coercivity of about 70%—much greater than that of the MgO underlayered samples. Percolated perpendicular medium can be realized in the FePt system and a Pt(0 0 1)/Cr(0 0 2) underlayer promotes the formation of pinning sites within the FePt grains.  相似文献   

3.
We investigate a kind of spin-Peierls transition (SP) in high Tc superconductivity. It is found the antiferromagnetic exchange integral of SP corresponds to the magnetic resonance peak. The kind of spin-Peierls transition applied to cuprate superconductors is that without dimerization of lattice ions and with dimerization of localized hole hCu attached to the ion. Absence of the magnetic resonance peak in La-Sr-Cu-O results from the dimerized state of localized hole, hCu below Tc into tetramerized phase above Tc in SP transition without dimerization of copper-ion. The checkerboard patterns with four unit cell period originate from the SP of electronic part without ion-dimerization and from charge occupation probability of oxygen-atom around Cu.  相似文献   

4.
The electron paramagnetic resonance (EPR) of Nd3+ ion in KY(WO4)2 single crystal was investigated at T=4.2 K using an X-band spectrometer. The observed resonance absorption represents the complex superposition of three spectra corresponding to neodymium isotopes with different nuclear momenta. The EPR spectrum is characterized by a strong g-factor anisotropy. The temperature dependences of the g-factor were caused by strong spin-orbit and orbit-lattice coupling. The resonance lines become broader as temperature increases due to the short spin-lattice relaxation time.  相似文献   

5.
High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L10 ordering transformation occurs at 500 °C. Coercivity (Hc) is increased with the annealing temperature in the studied range 400–800 °C. The Hc value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L10 lattice is negligible even after a high-temperature (800 °C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll0 particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix.  相似文献   

6.
To study the factors affecting the dielectric and piezoelectric properties of bismuth-containing complex perovskites, the solid solution (1−x)Pb(Mg1/3Nb2/3)O3-xBi(Mg2/3Nb1/3)O3 was prepared by the solid state reaction method and its dielectric and piezoelectric properties were investigated. It is found that (1) at room temperature, the nonlinearity of the DE-loop for Pb(Mg1/3Nb2/3)O3 is completely suppressed at a rather low x (<5%); (2) dielectric constant versus temperature curves deviate from the Curie-Weiss law at a temperature Td much higher than the dielectric constant peak temperature Tm and TmTd decreases considerably with increasing x; and (3) frequency dispersion ΔTm=Tm (1 MHz)−Tm (10 kHz) increases with increasing x. Possible factors responsible for the variation of the dielectric and piezoelectric properties with x are discussed.  相似文献   

7.
Using a co-precipitation method, perovskite-type manganese oxide La0.7Sr0.3MnO3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ≈2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La0.7Sr0.3MnO3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K.  相似文献   

8.
In this paper we report results on the synthesis and magnetic properties of L10 FePt nanocomposite films. Three fabrication methods have been developed to produce high-anisptropy FePt films: non-epitaxial growth of (0 0 1)-oriented FePt:X (X=Ag, C) composite films that might be used for perpendicular media; monodispersed FePt(CFx) core–shell nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; and template-mediated self-assembled FePt clusters prepared with chemical synthesis by a hydrogen reduction technique, which has a high potential for controlling both cluster size and orientation. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. Analytical and numerical simulations have been done for these films, providing better understanding of the magnetization reversal mechanisms. The films show promise for development as magnetic recording media at extremely high areal densities.  相似文献   

9.
We have studied the organic superconductor (TMTSF)2PF6 using 1H nuclear magnetic resonance. The spin-lattice (T1) and the spin-spin relaxation time (T2) measurements manifested a divergence associated with a structural phase transition at 160 K.  相似文献   

10.
Electron paramagnetic resonance on La2/3−xYxCa1/3MnO3 in the paramagnetic (PM) regime is presented for 0≤x≤0.133. The resonance linewidth (ΔHpp) decreases with cooling, reaches the minimum at Tmin, and then anomalously increases with further cooling toward Tc. Our analysis on ΔHpp(T) below Tmin shows that the anomalous PM behavior below Tmin is due to the appearance of a ferromagnetic (FM) phase within the PM matrix caused by the applied magnetic fields. The correlation between the anomalous PM and the colossal magnetoresistance is discussed. We argue that both are caused by the phase segregation in which the compound is phase-separated into a mixture of FM and PM regions.  相似文献   

11.
We reported 11B nuclear magnetic resonance studies of boron nitride (BN) nanotubes prepared by mechano-thermal route. The NMR lineshape obtained at 192.493 MHz (14.7 T) was fitted with two Gaussian functions, and the 11B nuclear magnetization relaxations were satisfied with the stretched-exponential function, exp[-(t/T1)(D+1)/6] (D: space dimension) at all temperatures. In addition, the temperature dependence of spin-lattice relaxation rates was well described by (a: constant, T: temperature) and could be understood in terms of direct phonon process. All the 11BNMR results were explained by considering the inhomogeneous distribution of the paramagnetic metal catalysts, such as α-Fe, Fe-N, and Fe2 B, that were incorporated during the process of high-energy ball milling of boron powder and be synthesized during subsequent thermal annealing. X-ray powder diffraction as well as electron paramagnetic resonance (EPR) on BN nanotubes were also conducted and the results obtained supported these conclusions.  相似文献   

12.
At 141 °C the solid acid CsHSO4 is known to undergo transition to a superprotonic phase that is characterized by dramatic (several-order-of-magnitude) increases in hydrogen ion conductivity. Proton NMR spin-spin relaxation time T2 measurements reported here for CsHSO4 also reveal substantial increases (factors of 20-30) in the vicinity of the transition temperature. In the temperature range just below the transition (70-136 °C), T2 increases by a factor of order 10 relative to the rigid-lattice regime, suggesting motional narrowing of the NMR resonance line. In the regime of motional narrowing, the activation energy barrier to diffusion is 0.40 eV, as determined from the present T2 results. NMR spin-lattice relaxation T1 measurements also show behavior consistent with transition to a regime of rapid hydrogen motion. In particular, proton T1's decrease with temperature (from 80 to 120 °C), and then drop sharply near the transition temperature. Above the transition temperature, T1 exhibits a minimum in which the correlation time is found to be ∼2 ns.  相似文献   

13.
The molecular susceptibility and paramagnetic shift of Rb2CoCl4 single crystals grown using the slow evaporation method were measured, and from these experimental results we obtained the transferred hyperfine interaction due to the transfer of spin density from Co2+ ions to Rb+ ions. The transferred hyperfine field was obtained for the ferroelectric, incommensurate, and normal phases. In the case of Rb(I), the transferred hyperfine interaction decreases with increasing temperature in the incommensurate phase, and increases with increasing temperature in the normal phase. The value of Hhf in the incommensurate and normal phases increases abruptly with increasing temperature in the case of Rb(II). These results indicate that the effects due to the transfer of spin density from Co2+ ions to the Rb(I) and Rb(II) ions are large above Ti. In particular, the effect due to the transfer of spin density to Rb(II) ions in the normal phase is very large; the variations with temperature of the transferred hyperfine interactions of the Rb(I) and Rb(II) nuclei are more or less continuous in Tc1 and Ti, and are not affected by the ferroelectric-incommensurate-normal phase transitions.  相似文献   

14.
15.
Yttrium iron garnet (YIG) thin films were deposited on fused quartz substrate at different substrate temperatures (Ts) varying from room temperature (RT) to 850 °C using pulsed laser deposition (PLD) technique. All the films in the as-deposited state were X-ray amorphous and non-magnetic at RT. The film deposited at RT after annealing at temperatures Ta?700 °C showed both X-ray peaks and the magnetic order. The films deposited at higher Ts (500–850 °C) and then annealed at 700 °C resulted in better-quality films with higher 4πMs value. The highest value of magnetization was for the sample deposited at 850 °C and annealed at 700 °C, which is 68% of the bulk 4πMs value.  相似文献   

16.
Magnetoresistive La0.67−yYyBa0.33MnO3/LaAlO3 thin films were prepared by the sol-gel spin-coating method. Our resistivity and the electron spin resonance (ESR) measurements indicate that the main factor determining the metal-insulator transition temperature Tm is the cation disorder represented by the cation radii variance σ2, and that ferromagnetic insulating regions coexist in the ferromagnetic metallic phase. In the paramagnetic phase, the dissociation energy of spin clusters and the polaron hopping energy obtained from the ESR intensity and linewidth also displayed a prominent dependence on σ2. Polaron localization due to Jahn-Teller distortions appears to be responsible simultaneously for the decrease in the ferromagnetic order and for the increase in the orbital order.  相似文献   

17.
Electron spin resonance of donors in GaAs has been observed through optical orientation and detection of spins. GaAs samples doped below the metal-insulator transition were studied. The resonance linewidth increases as the concentration of donors is reduced, due to the dependence of the T2* spin lifetime on correlation effects between donor electrons. The linewidth of the lowest doped sample (3×1014 cm−3) corresponds to a T2* of 5 ns, which is the value predicted for electrons in the non-interacting, localized limit. The nuclei need to be simultaneously depolarized in order to make the electron resonance observable.  相似文献   

18.
FePt (20 nm) films with AgCu (20 nm) underlayer were prepared on thermally oxidized Si (0 0 1) substrates at room temperature by using dc magnetron sputtering, and the films annealed at different temperature to examine the disorder–order transformation of the FePt films. It is found that the ordered L10 FePt phase can form at low annealing temperature. Even after annealing at 300 °C, the in-plane coercivity of 5.2 kOe can be obtained in the film. With increase in annealing temperature, both the ordering degree and coercivity of the films increase. The low-temperature ordering of the films may result from the dynamic stress produced by phase separation in AgCu underlayer and Cu diffusion into FePt phase during annealing.  相似文献   

19.
IrO2 thin films were prepared on Si(1 0 0) substrates by laser ablation. The effect of substrate temperature (Tsub) on the structure (crystal orientation and surface morphology) and property (electrical resistivity) of the laser-ablated IrO2 thin films was investigated. Well crystallized and single-phase IrO2 thin films were obtained at Tsub = 573-773 K in an oxygen partial pressure of 20 Pa. The preferred orientation of the laser-ablated IrO2 thin films changed from (2 0 0) to (1 1 0) and (1 0 1) depending on Tsub. With the increasing of Tsub, both the surface roughness and crystallite size increased. The room-temperature electrical resistivity of IrO2 thin films decreased with increasing Tsub, showing a low value of (42 ± 6) × 10−8 Ω m at Tsub = 773 K.  相似文献   

20.
We examine the ferroelectric-relaxor behavior of (Ba0.65Sr0.35)(Zr0.35Ti0.65)O3 (BSZT) ceramics in the temperature range from 80 to 380 K. A broad dielectric maximum, which shifts to higher temperature with increasing frequency, signifies the relaxor-type behavior of these ceramics. The value of the relaxation parameter γ∼2 estimated from the linear fit of the modified Curie-Weiss law, indicates the relaxor nature of the BSZT ceramics. The dielectric relaxation rate follows the Vogel-Fulcher relation with TVF=107 K, Ea=0.121 eV, and ν0=6.83×1014 Hz, further supports such relaxor nature. The slim P-E hysteresis loop and ‘butterfly’ shape dc bias field dependence of permittivity at T>Tm (Tm, the temperature of permittivity maximum) clearly signifies the occurrence of nanopolar clusters, which is the typical characteristic of ferroelectric relaxor. At 300 K and 10 kHz, the dielectric constant and loss tan δ are ∼1100 and 0.0015, respectively. The high tunability (∼25%) and figure of merit (∼130) at room temperature show that the BSZT ceramics could be a promising candidate for tunable capacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号