首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We report on the magnetization reversal of elliptic ring patterns lithographically prepared from Fe films. The elliptic rings in four different arrays are all of the same size , but their geometry is disturbed by introducing an increasing number of slits into the rings. The magnetization reversal is studied by regular longitudinal vector magneto-optical Kerr effect in specular geometry as well as in Bragg geometry, using the diffraction spots from the grating for hysteresis measurements. The measurements are compared with the results of micromagnetic simulation, which allow a detailed interpretation of the experimental data. We find that the remagnetization process in an external magnetic field is characterized by single-step switching or double switching depending on the geometry of the structure.  相似文献   

2.
The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni80Fe20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni80Fe20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni80Fe20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.  相似文献   

3.
Artificial spin ice has been recently implemented in two-dimensional arrays of mesoscopic magnetic wires. We propose a theoretical model of magnetization dynamics in artificial spin ice under the action of an applied magnetic field. Magnetization reversal is mediated by domain walls carrying two units of magnetic charge. They are emitted by lattice junctions when the local field exceeds a critical value Hc required to pull apart magnetic charges of opposite sign. Positive feedback from Coulomb interactions between magnetic charges induces avalanches in magnetization reversal.  相似文献   

4.
We have investigated the evolution in the magnetization reversal mechanism of lithographically defined Ni80Fe20 nanowire arrays with varied film thicknesses. The nanowire array of width 185 nm and spacing 35 nm were fabricated using deep ultraviolet lithography at 248 nm exposing wavelength. We observed a cross-over from coherent rotation to curling reversal mode when the thickness to width ratio 0.5. We have aided our understanding of the reversal process with theoretical modeling. A marked increase in the coercive field characterized the intermediate region between coherent rotation and magnetization curling.  相似文献   

5.
Magnetic properties of spatially ordered arrays of interacting nanofilaments have been studied by means of small-angle diffraction of polarized neutrons. Several diffraction maxima or rings that correspond to the scattering of the highly ordered structure of pores/filaments with hexagonal packing have been observed in neutron scattering intensity maps. The interference (nuclear-magnetic) and pure magnetic contributions to the scattering have been analyzed during the magnetic reversal of the nanofilament array in a field applied perpendicular to the nanofilament axis. The average magnetization and the interference contribution proportional to it increase with the field and are saturated at H = H S . The magnetic reversal process occurs almost without hysteresis. The intensity of the magnetic contribution has hysteresis behavior in the magnetic reversal process for both the positive and negative fields that form the field dependence of the intensity in a butterfly shape. It has been shown that this dependence is due to the magnetostatic interaction between the filaments in the field range of HH S . A theory for describing the magnetic properties of the arrays of interacting ferromagnetic nanofilaments in the magnetic field has been proposed.  相似文献   

6.
The time-resolved magneto-optical Kerr spectroscopy technique is used to study the ultrafast magnetization dynamics induced by femtosecond laser pulses in GdFeCo amorphous film. We study concretely the influence of the different pump fluence and the different external magnetic field on magnetization dynamics of ultrafast demagnetization, magnetization reversal and magnetization recovery. The pump fluence dependence magnetization dynamics shows that the degree of demagnetization, the degree of magnetization reversal and the time of magnetization recovery increase with pump fluence, which can be interpreted by the “three-temperature” model. The external magnetic field dependence magnetization dynamics shows that the rate of magnetization reversal increases with the external field, which accord with the magnetization reversal mechanism based on the reversed magnetic domain nucleation and domain-wall motion.  相似文献   

7.
We have developed a method to fabricate ferromagnetic antidot arrays on silicon nitride membrane substrates for electron or soft X-ray microscopy with antidot periods ranging from 2 μm down to 200 nm. Observations of cobalt antidot arrays with magnetic soft X-ray microscopy show that for large periods, flux closure states occur between the antidots in the as-grown state and on application of a magnetic field, domain chains are created which show a spin configuration at the chain ends comprising four 90° walls. Pinning of the domain chain ends plays an important role in the magnetization reversal, determining the length of the chains and resulting in preservation of the domain chain configuration on reducing of the applied magnetic field to zero.  相似文献   

8.
Amorphous FeSiB wires with positive magnetostriction are very perspective soft magnetic materials for many applications, e.g. torque, field or current sensors, pulse generators and highly sensitive magnetometers. The appearance of the Large Barkhausen Effect (LBE) during slow magnetization of FeSiB wires is described by means of the core-shell model assuming a residual radial tensile stresses in the as-cast state. In this work, the LBE during magnetization reversal of Fe77.5Si7.5B15 amorphous wire in the as-cast state was analysed. We have studied the kinetics of the reverse domain in the core region of the wire by means of Sixtus-Tonks method of two small pick-up coils placed in an asymmetric way with respect to the ends of the wire. We estimated the velocity of the reverse domain wall and the core region volume of the wire. It was found that the residual radial tensile stress distribution of the shell region strongly influences the magnetization reversal in the FeSiB wire.  相似文献   

9.
林虹  钟文定 《物理学报》1985,34(11):1385-1395
本文研究了Sm2(FeNiCoM)17合金(M为非磁性组元)的磁性。样品由六角结构无序型的2∶17主相及少量FeNi合金杂相组成。在六角结构的e轴方向(易磁化方向)观察到下述异常现象:低温(273K以下)时的磁化及反磁化曲线发生明显的跃变,跃变时相应的磁场Hr随温度下降而增大;磁滞迴线是蜂腰型的,温度愈低蜂腰愈明显;升温时磁化强度随温度变化(1.5K至居里点TC)的曲线上出现极大值,其相应的温度Tt随磁场增大而降低;降温时观察到了热磁滞后现象。但在基面(难磁化方向)上及Co含量增多(>18at%)时,样品却表现了正常的铁磁行为。本文提出用磁矩非共线结构排列的自旋再取向相变来解释上述异常现象,并给出自旋倒向所需越过的能垒高度U=9.2×10-15erg,用设想磁结构的模型得到的磁化强度的计算值与实验值也符合得较好。 关键词:  相似文献   

10.
The magnetization and susceptibility of a cylindrical core/shell spin-1 Ising nanowire are investigated within the effective-field theory with correlations for both ferromagnetic and antiferromagnetic exchange interactions between the shell and the core. We find that the nanowire system exhibits two distinct susceptibility peaks and two successive phase transitions; either both of them are second-order transitions or one is a second-order transition and the other is a first-order transition for a small exchange interaction. The susceptibility versus switching field and the hysteresis behavior are investigated for different temperatures. It is found that the magnetization reversal events appear as peaks in the susceptibility versus switching field curve, the positions of which define the coercive field points of the nanowire system; the distance between the two susceptibility peaks decreases with increasing temperature.  相似文献   

11.
Technological improvements require the understanding of dynamical magnetization reversal processes at the nanosecond time scales. In this paper, we present the first magnetization reversal measurements performed on a single cobalt cluster (counting only a thousand of spins), using the micro-superconducting quantum interference device (SQUID) technique by applying a constant magnetic field combined with a radio-frequency (RF) field pulse. First of all, we present the different technical steps necessary to detect the magnetic reversals at low temperature (T=35 mK) of a well-defined nanoparticle prepared by low energy clusters beam deposition (LECBD). We previously showed that the three-dimensional (3D)-switching Stoner-Wohlfarth astroid represents the magnetic anisotropy of the nanoparticle. Then, an improved device coupled with a gold stripe line, allow us to reverse such macrospin, using a RF pulse. A qualitative understanding of the magnetization reversal by non-linear resonance has been obtained with the Landau-Lifschitz-Gilbert (LLG) equation.  相似文献   

12.
Measurements are reported on the magnetization reversal in submicron magnetic rings fabricated by high-resolution electron beam lithography and lift-off from cobalt thin films. For all dimensions investigated, with diameters of 300-800 nm and a thickness of 10-50 nm, the flux closure state is the stable magnetization configuration. However, with increasing diameter and decreasing film thickness a metastable near single domain state can be obtained during the reversal process in an in-plane applied field.  相似文献   

13.
李洪健  岳明  吴琼  彭懿  李玉卿  刘卫强  张东涛  张久兴 《中国物理 B》2017,26(11):117503-117503
Magnetic properties and magnetization processes of Co nanowire arrays with various packing densities are investigated by means of object-oriented micromagnetic framework(OOMMF) software package with finite difference micromagnetic simulations. The packing density of nanowires is changed with the diameter, number of nanowires and center-to-center spacing between the wires. The magnetization reversal mechanism and squareness of the hysteresis loops of the nanowire arrays are very sensitive to the packing density of nanowires. Clear steps and plateaux on the demagnetization are visible,which turns out that dipolar interactions among the wires have a significant influence on switching field.  相似文献   

14.
We present a dynamical study of hysteresis loops of a MoS2/[Au/Co/Au] sandwich performed by surface magneto-optical Kerr effect with a field variation rate up to 1.2 MOe/s. An interpretation of dynamical effects at room temperature is proposed, using a modelization of the magnetization reversal. We discuss simulations which describe two different processes of the magnetization reversal to interpret the evolution of the hysteresis loops for several rates of variation of the magnetic field. For a first range of field variation rates lower than 180 kOe/s, the predominant mechanism seems to be wall motion and beyond 180 kOe/s, an expression for the magnetization is given, which supposes micro-domains reversal as a prevailing process. Finally, the general behaviour of the relaxation time, depending on the magnetic field, is investigated.  相似文献   

15.
The magnetization reversal of an array of permalloy particles formed by scanning probe lithography on the silicon dioxide surface has been investigated in the temperature range from room temperature to 800 K. Using scanning magnetic force microscopy and numerical calculations of the magnetic anisotropy field of a particle at different temperatures, it has been shown that an increase in the temperature leads to a decrease in the external magnetic field required to reverse the magnetization direction of the particle. From the obtained results, it has been concluded that the magnetization reversal of the studied particles is accompanied by the formation of an intermediate state with an inhomogeneous magnetization structure.  相似文献   

16.
We have investigated the temperature dependence of the magnetic properties and the magnetic relaxation of the Fe55Co45 nanowire arrays electrodeposited into self-assembled porous alumina templates with the diameter about 10 nm. X-ray diffraction (XRD) pattern indicates that the nanowire arrays are BCC structure with [1 1 0] orientation along the nanowire axes. Owing to the strong shape anisotropy, the nanowire arrays exhibit uniaxial magnetic anisotropy with the easy magnetization direction along the nanowire axes. The coercivity at 5 K can be explained by the sphere chains of the symmetric fanning mechanism. The temperature dependence of coercivity can be interpreted by thermally activated reversal mechanism as being the localized nucleation reversal mechanism with the activation volume much smaller than the wire volume. Strong field and temperature-dependent magnetic viscosity effects were also observed.  相似文献   

17.
The magnetization reversal in an array of Fe nanodots etched from the continuous iron film by a focused Ga+ ion beam has been studied. The size of the dots is 600 nm, and the interdot distances are equal to 3.8 μm, 900 nm, and 700 nm. The energy of the dipole-dipole interaction between the nanodots is estimated for arrays with different periods. It is demonstrated that the mechanisms of magnetization reversal are different in arrays of nanodots with strong and negligible dipole-dipole interactions.  相似文献   

18.
A magneto-optical setup based on the transverse Kerr effect has been designed to study the magnetization reversal processes by vector magnetometry in arrays of magnetic nanostructures with a reduced total volume. This system allows the measurement of both the parallel and perpendicular to the field components of the magnetization. It has been used to analyze the behavior of amorphous Co x Si1-x lines fabricated by electron beam lithography that present a very well defined shape induced uniaxial anisotropy. When the field is applied near to the hard direction, coherent rotation processes are found to occur with a collapse of this reversal mode at fields very close to the hard axis that allows to estimate the very low anisotropy dispersion of these samples. The analysis of the vector hysteresis loops reveals that the magnetization switches via an incoherent process that starts prior to the Stoner-Wohlfarth instability and that can be described in terms of a localized curling-like reversal mode.Received: 16 June 2004, Published online: 24 September 2004PACS: 75.75. + a Magnetic properties of nanostructures - 75.60.Jk Magnetization reversal mechanisms - 75.50.Kj Amorphous and quasicrystalline magnetic materials  相似文献   

19.
One of the important requirements for spintronic devices concerns an efficient magnetization reversal, which may eventually lead to ultra-fast non-volatile magnetic memory applications. In particular, it is necessary to achieve stable sub-nanosecond switching times and to reduce magnetization “ringing”, so that the reversal will proceed along the shortest ballistic path connecting the initial and the target magnetization states. This paper is dedicated to the numerical simulations of a mono-domain ferromagnetic particle, described by the Landau–Lifshitz–Gilbert equation. We study the general case of arbitrary orientation of the applied field/current pulses, constructing dynamic diagrams for the reversal time. We have found that even short 50 ps pulses, applied at a proper angle, will induce magnetization reversal with minimal ringing effects.  相似文献   

20.
The low-temperature stable states and the magnetization reversal of realistic two-dimensional nanoarrays with higher-order magnetostatic interactions are studied theoretically. For a general calculus of the multipole-multipole interaction energy we introduce a Hamiltonian in spherical coordinates into the Monte Carlo scheme. We demonstrate that higher-order interactions considerably change the dipolar ground states of in-plane magnetized arrays favoring collinear configurations. The multipolar interactions lead to enhancement or decrease of the coercivity in arrays with in-plane or out-of-plane magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号