共查询到20条相似文献,搜索用时 15 毫秒
1.
R.K. Zheng M.P. Moody Z.W. Liu S.P. Ringer 《Journal of magnetism and magnetic materials》2009,321(8):935-943
Spintronics, in which both the spin and charge of electrons are used for logic and memory operations, promises to revolutionize the current information technology. Just as silicon supports microelectronics, diluted magnetic semiconductors (DMSs) will be the platform of spintronics. Ideal DMSs should maintain ferromagnetic and semiconducting properties at operating temperatures to realize the spintronic functions. Although many high-temperature Curie temperature DMSs have been reported, the origin of ferromagnetism remains controversial. Currently, this is a major obstacle to the development of spintronic devices. The solution to this problem depends on a more complete understanding of DMS microstructure, especially the distribution of doped magnetic ions at atomic resolution and any defects introduced. Therefore, an analysis technique is required, possessing both high spatial and elemental resolutions, which is beyond the capability of conventional techniques, such as electron microscopy. However, atom probe tomography (APT), which recently has been successfully applied to nanoscale characterization of structural materials, has the potential to provide the unique combination of near atomic spatial and elemental resolutions needed for such an investigation. 相似文献
2.
Kanwal Preet Bhatti 《Solid State Communications》2005,136(7):384-388
Room-temperature ferromagnetism (RTFM) is investigated in the polycrystalline bulk (ZnO)0.98(MnO2)0.02 samples prepared by a modified solid-state sintering route. Successive sintering of a sample was carried out in air at different temperatures in the range of 400-1000 °C. The study of magnetization and phase-investigation in the sample was carried out after each sintering step. The progressive suppression of impurities and the consequent reduction in RTFM is clearly observed in the samples with increase in the sintering temperature up to 800 °C. The subsequent successive sintering of the (ZnO)0.98(MnO2)0.02 sample up to 1000 °C yields fully paramagnetic sample exhibiting wurtzite structure. The studies support the conjecture (Kundaliya et al., Nat. Mater. 3 (2004) 709 [18]) that RTFM in this system has an origin related to a randomly distributed impurity phase produced by local dissolution of ZnO and MnO2. 相似文献
3.
We analyze the origin of ferromagnetism as a result of carrier mediation in diluted magnetic oxide semiconductors in the light of the experimental evidence reported in the literature. We propose that a combination of percolation of magnetic polarons at lower temperature and Ruderman-Kittel-Kasuya-Yosida ferromagnetism at higher temperature may be the reason for the very high critical temperatures measured (up to ∼700 K). 相似文献
4.
The electronic structure and magnetic properties of nonmagnetic phosphorus doped ZnO are investigated using first-principles calculation. Both generalized gradient approximation (GGA) and GGA + U calculations show that each substitutional P atom in ZnO induces a magnetic moment of about 1.0 μB, which come mainly from the partially filled p orbitals of the substitutional P and its 12 second neighboring O atoms. The magnetic coupling between the moments induced by P doping is ferromagnetic. The calculated electronic structures indicate that the ferromagnetic coupling can be explained in terms of the two band coupling model. 相似文献
5.
Subhash C. Kashyap K. Gopinadhan D.K. Pandya Sujeet Chaudhary 《Journal of magnetism and magnetic materials》2009,321(8):957-962
Room-temperature ferromagnetism has been observed in Co- or Mn-doped SnO2 and Co- and F-co-doped SnO2 thin films. A maximum magnetic moment of 0.80μB/Co ion has been observed for Sn0.90Co0.10O1.925−δF0.075 thin films, whereas in the case of Sn1−xMnxO2−δ it was 0.18μB/Mn ion for x=0.10. The magnetization of both Sn1−xCoxO2−δ and Sn1−xCoxO2−y−δFy thin films depends on the free carrier concentration. An anomalous Hall effect has been observed in the case of Co-doped SnO2 films. However, the same was not observed in the case of Mn-doped SnO2 thin films. Carrier-mediated interaction is convincingly proved to be the cause of ferromagnetism in the case of Co:SnO2. It is, however, proposed that no carrier-mediated interaction exists in the case of Mn:SnO2. Present studies indicate that dopants and hence electronic cloud-lattice interaction plays an important role in inducing ferromagnetism. 相似文献
6.
We report ab initio density-functional theory investigations on the local structure and magnetization of Co ions doped in TiO2 anatase. The calculated formation energy of the pair of substitutional Co ions indicates that they have a tendency to cluster; but clustering has no noticeable effect on the low-spin state of Co. The interstitial Co, which is energetically unstable in reference to bulk cobalt, is found to be strongly attracted to a substitutional Co, and even more strongly to a substitutional Co pair. Interestingly, in a one-to-one binding, the interstitial Co enhances the magnetization of the two; whereas in a one-to-two binding, it destroys the magnetic moment of the substitutional Co pair and therefore reduces the average magnetic moment of Co ions. Our results could explain the strong sample-to-sample variability of the magnetic moment of Co measured in experiments. The magnetic interaction between substitutional and interstitial Co is discussed with bonding analysis. 相似文献
7.
Hongxia Wang Y. Sh. Mohammed Xiaobo Du Kai Li Hanmin Jin 《Journal of magnetism and magnetic materials》2009,321(19):3114-3119
The electronic structure and ferromagnetic stability of Co-doped SnO2 are studied using the first-principle density functional method within the generalized gradient approximation (GGA) and GGA+U schemes. The addition of effective UCo transforms the ground state of Co-doped SnO2 to insulating from half-metallic and the coupling between the nearest neighbor Co spins to weak antimagnetic from strong ferromagnetic. GGA+UCo calculations show that the pure substitutional Co defects in SnO2 cannot induce the ferromagnetism. Oxygen vacancies tend to locate near Co atoms. Their presence increases the magnetic moment of Co and induces the ferromagnetic coupling between two Co spins with large Co-Co distance. The calculated density of state and spin density distribution calculated by GGA+UCo show that the long-range ferromagnetic coupling between two Co spins is mediated by spin-split impurity band induced by oxygen vacancies. More charge transfer from impurity to Co-3d states and larger spin split of Co-3d and impurity states induced by the addition of UCo enhance the ferromagnetic stability of the system with oxygen vacancies. By applying a Coulomb UO on O 2 s orbital, the band gap is corrected for all calculations and the conclusions derived from GGA+UCo calculations are not changed by the correction of band gap. 相似文献
8.
The rapidly developing field of ferromagnetism in diluted magnetic semiconductors, where a semiconductor host is magnetically doped by transition metal impurities to produce a ferromagnetic semiconductor (e.g. Ga1−xMnxAs with x≈1-10%), is discussed with the emphasis on elucidating the physical mechanisms underlying the magnetic properties. Recent key developments are summarized with critical discussions of the roles of disorder, localization, band structure, defects, and the choice of materials in producing good magnetic quality and high Curie temperature. The correlation between magnetic and transport properties is argued to be a crucial ingredient in developing a full understanding of the properties of ferromagnetic semiconductors. 相似文献
9.
We establish a model to investigate the effect of clustering of impurities on the ferromagnetism in dilute magnetic semiconductors (DMS). The Curie temperature Tc is calculated by the mean-field theory on a lattice with randomly distributed clusters of magnetic impurities which are interacting with each other by carrier mediated RKKY exchange coupling together with the nearest-neighbor (NN) direct exchange interaction. We consider different types and sizes of the clusters and find that the clustering of impurities can either enhance or reduce Tc, depending on the type and strength of the NN exchange interaction. If the NN interaction is antiferromagnetic and strong compared with the RKKY interaction, the clustering will reduce Tc. On the other hand, if it is ferromagnetic interaction or weak antiferromagnetic one, the clustering can enhance Tc. The trend of enhancing Tc is magnified if the average size of clusters increases. The clustering also changes the distribution of polarizations of impurities. The obtained results provide natural explanations on the fact that the ferromagnetism of DMS samples depends on the preparing and annealing processes even though the density of the magnetic impurities is kept the same. 相似文献
10.
Jeongyong Choi Hee-Woong Lee Bong-Seo Kim Hyoyeol Park Sungyoul Choi S.C. Hong Sunglae Cho 《Journal of magnetism and magnetic materials》2006
We report on the single crystal growth and thermoelectric and magnetic properties of Mn-doped Bi2Se3 and Sb2Se3 single crystals prepared by the temperature gradient solidification method. The composition and crystal structure were determined using electron probe microanalysis and θ–2θ powder X-ray diffraction studies, respectively. The lattice constants of several percent Mn-doped Bi2Se3 and Sb2Se3 were slightly smaller than those of the undoped sample due to the smaller Mn atomic radius (1.40 Å) than those of Bi (1.60 Å) and Sb (1.45 Å). Mn-doped Bi2Se3 and Sb2Se3 showed spin-glass and paramagnetic properties, respectively. 相似文献
11.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases. 相似文献
12.
Electronic States and Spatial Charge Distribution of Single Mn Impurity in Diluted Magnetic Semiconductors 下载免费PDF全文
The electronic and magnetic properties as well as the spatial charge distribution of single Mn impurity in III--V diluted magnetic semiconductors are obtained when the degeneracy of the p orbits contributed from the four nearest-neighbouring As(N) atoms is taken into account. We show that in the ground state, the Mn spin is strongly antiferromagnetically coupled to the surrounding As(N) atoms when the p-d hybridization Vpd is large and both the hole level Ev and the impurity level Ed are close to the Fermi energy. The spatial charge distribution of the Mn acceptor in the (110) plane is non-spherically symmetric, in good agreement with the recent STM images. 相似文献
13.
The effects of Co dopants and oxygen vacancies on the electronic structure and magnetic properties of the Co-doped SnO2 are studied by the first-principle calculations in full-potential linearized augmented plane wave formalism within generalized gradient approximations. The Co atoms favorably substitute on neighboring sites of the metal sublattice. Without oxygen vacancies, the Co atoms are at low spin state independent of concentration and distribution of Co atoms, and only the magnetic coupling between nearest-neighbor Co atoms is ferromagnetic through direct exchange and super-exchange interaction. Oxygen vacancies tend to locate near the Co atoms. Their presence strongly increases the local magnetic moments of Co atoms, which depend sensitively on the concentration and distribution of Co atoms. Moreover, oxygen vacancies can induce the long-range ferromagnetic coupling between well-separated Co atoms through the spin-split impurity band exchange mechanism. Thus the room temperature ferromagnetism observed experimentally in the Co-doped SnO2 may originate from the combination of short-range direct exchange and super-exchange interaction and the long-range spin-split impurity band exchange model. 相似文献
14.
Kyu Won Lee 《Solid State Communications》2004,131(8):527-530
The 1H nuclear spin-lattice relaxation behavior was characterized in the perovskite-type layered structure quasi-two-dimensional Heisenberg paramagnets, (CnH2n+1NH3)2MnCl4,with different chain lengths (n=8, 10, and 12). In contrast to the case of the short-chain compound with n=8, the nuclear spin diffusion to the electron spin system alone is not able to fully account for the spin-lattice relaxation in the compounds with longer chain lengths. Our results are discussed in light of the nuclear magnetic relaxation by the regularly distributed dense paramagnetic ions. 相似文献
15.
We present the first-principles calculations of digital magnetic heterostructures Si/M, Ge/M. GaAs/M, GaSb/M, GaN/M and GaN/M (50%) with M=Cr, Mn, Fe, and Co. The interaction between magnetic dopants results in a wide spin-polarized two-dimensional band inside the gap. It is found that beginning occupation of the minority-spin band greatly increases the energy of the ferromagnetic (FM) state and leads, as a rule, to the antiferromagnetic (AFM) spin ordering. This mechanism causes transition to the AFM state, when interaction between magnetic atoms is too strong, and defines the optimum of Curie temperature as a function of transition element concentration in magnetic layers. 相似文献
16.
Gustavo M. Dalpian Su-Huai Wei X.G. Gong Antônio J.R. da Silva 《Solid State Communications》2006,138(7):353-358
A unified band structure model is proposed to explain the magnetic ordering in Mn-doped semiconductors. This model is based on the p-d and d-d level repulsions between the Mn ions and host elements and can successfully explain magnetic ordering observed in all Mn doped II-VI and III-V semiconductors such as CdTe, GaAs, ZnO, and GaN. The model can also be used to explain the interesting behavior of GaMnN, which changes from ferromagnetic ordering to antiferromagnetic ordering as the Mn concentration increases. This model, therefore, is useful to provide a simple guideline for future band structure engineering of magnetic semiconductors. 相似文献
17.
Using a picosecond pump and probe time-resolved technique we evidence a single pump pulse photo-induced magnetic ordering in a Mn-doped semiconductor magneto-photonic microcavity operating in the strong coupling regime at room temperature. This nanosecond duration magnetization is attributed to a magnetic ordering of the Mn-impurities mediated through photo-generated holes and enhanced through the confinement. It is distinct from the preceding short lived photo-induced spin orientation of carriers also evidenced by our technique for circularly polarized pump beams. The photo-generated magnetic flux density amounts to a 1 kG for beam fluences of few tens μJ cm−2 and effective Mn concentrations of 5 nm−3; large photo-induced magneto-optic Kerr rotations are also evidenced. 相似文献
18.
We have studied the magnetic properties of Zn0.96M0.04O (M=Mn, Fe, Co) compounds prepared using several routes. The low temperature ceramic synthesis gave multiphasic samples and show ferromagnetic behavior. Single phases can be obtained by heating at higher temperatures (∼900–1100 °C). The use of very low oxygen pressure also favours the preparation of single-phases. We were also successful in preparing single-phase samples at very low temperature (∼400 °C) by using a sol-gel method. All of the samples without noticeable secondary phases in the X-ray patterns behave as conventional paramagnets. This is true even for the samples with very low grain size. Samples exhibiting secondary phases reveal spontaneous magnetization even at room temperature in some cases. Our results strongly support that ferromagnetism at room temperature is always due to the presence of secondary phases and not to the doping of ZnO. 相似文献
19.
Based on the Anderson impurity model and self-consistent approach, we investigate the condition for the screening of a local magnetic moment by electrons in graphene and the influence of the moment on electronic properties of the system. The results of numerical calculations carried out on a finite sheet of graphene show that when the Fermi energy is above the single occupancy energy and below the double occupancy energy of the local impurity, a magnetic state is possible. A phase diagram in a parameter space spanned by the Coulomb energy U and the Fermi energy is obtained to distinguish the parameter regions for the magnetic and nonmagnetic states of the impurity. We find that the combined effect of the impurity and finite size effect results in a large charge density near the edges of the finite graphene sheet. The density of states exhibits a peak at the Dirac point which is caused by the appearance of the edge states localized at the zigzag edges of the sheet. 相似文献
20.
V.A. Ivanov E.A. UgolkovaO.N. Pashkova V.P. SanyginA.G. Padalko 《Journal of magnetism and magnetic materials》2006
Spintronics materials may be classified under concentrated magnetic semiconductors, semimetals and half-metals, semimagnetic semiconductors, and dilute magnetic semiconductors (DMS). The nature of ferromagnetism, that occurs in p-type DMS with an increase in the transition metal content, is governed by the proposed kinematic exchange involving the kinetic energy gain of the heavy hole carriers caused by their hybridization with 3d electrons of impurities. The synthesis of DMS (In,Mn)Sb is proposed on the basis of hint at its TC from kinematic mechanism. The effect of the dimensionality-driven TC increase is derived for spintronics materials such as delta-doped DMS (DDMS) and DMS heterostructures. The state-of-the-art in the field of synthesis and research of “new” DMS with announced “high TC” is also outlined with particular attention to chalcopyrite-based systems. 相似文献