首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The magnetic behavior of Ni2+xMn1−xAl alloys around the stoichiometric 2:1:1 composition was investigated with several experimental techniques. The results of low-temperature magnetization measurements indicate that a competition mechanism between ferromagnetism and antiferromagnetism is expected in off-stoichiometric alloys. Although the Curie temperature is strongly dependent on the composition, the saturation magnetization has an unsystematic variation for deviations from the stoichiometric Ni2MnAl alloy. A reentrant-spin-glass behavior is observed below 50 K.  相似文献   

2.
Zinc-substituted cobalt ferrites, Co1–xZnxFe2O4, were for the first time successfully prepared by forced hydrolysis method. The obtained materials are single phase, monodispersed nanocrystalline with an average grain size of about 3 nm. These materials are superparamagnetic at room temperature and ferrimagnetic at temperature lower than the blocking temperature. When the zinc substitution increases from x=0 to 0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nanocrystalline magnetic ferrites for practical applications.  相似文献   

3.
In FeSiAl alloys, when Si substitutes for Al, important changes take place in the magnetism as well as in the structural properties. Alloys in the two composition series Fe75Al25−xSix (x=0, 7.5, 12.5, 17.5, 25) and Fe70Al30−xSix (x=0, 9, 15, 21, 30) were prepared by induction melting; afterwards they were crushed and then annealed in order to recover the DO3 stable phase. The deformed FeAl samples show larger lattice parameters than the ordered ones; however, this difference (Δa) decreases when Si substitutes for Al until it becomes zero (i.e. until the ordered samples and the deformed ones have the same lattice parameters). This trend is the same for both sample series and does not depend on the Fe content of the alloy. However, the magnetization has a different behaviour depending on the Fe content. For deformed Fe75Al25−xSix alloys the saturation magnetization decreases with increasing Si content while for Fe70Al30−xSix deformed alloys the saturation magnetization has a plateau in which the saturation magnetization values do not vary.  相似文献   

4.
Under various amplitude of AC magnetic fields domain wall motion is the main mechanism in the magnetization process. This includes domain wall bulging and domain wall displacing. In this paper complex permeability-frequency spectra of (Fe1−xCox)73.5Cu1Nb3Si13.5B9 (x=0,0.5x=0,0.5) nanocrystalline alloys were measured as a function of the AC magnetic field, ranging from 0.001 to 0.04 Oe. Obvious changes have been found in complex permeability spectra for alloy x=0x=0 with the change of the amplitude of AC magnetic field, but variation of AC magnetic field has little effect on complex permeability spectra for alloy x=0.5x=0.5. This is attributed to the increased pinning field after substitution of Fe with Co in Fe73.5Cu1Nb3Si13.5B9 nanaocrystalline alloy.  相似文献   

5.
First-principles calculations of electronic structure and magnetic properties based on density-functional theory were performed for MnFeP1−xSix (0.44?x?0.60) alloys which are considered as promising magnetocaloric refrigerants. We used the full-potential APW+lo method and treated the random order of P(Si) atoms in the ZrNiAl-type structure in a virtual-crystal approximation. A non-monotonic behavior of the alloy magnetization as a function of x was obtained, in qualitative agreement with experiment, and explained in terms of the spin-polarized densities of states.  相似文献   

6.
The influence of Cu content and the annealing conditions in the (Fe0.5Co0.5)85?x Nb7B8Cu x (x=0.5, 1.0, 1.5) soft magnetic alloys on the magnetic properties and microstructure were investigated. The additions of Cu lower the primary and secondary crystallization temperatures and the αγ phase transformation temperature of the FeCoNbB alloys. The (Fe0.5Co0.5)84Nb7B8Cu1 alloy annealed at 873 K for 3.6 ks, in which α-(Fe, Co) nanocrystalline phase with diameter of 5 nm precipitated from the amorphous matrix, shows the best soft magnetic properties. The resulting (Fe0.5Co0.5)84Nb7B8Cu1 nanocrystalline alloy exhibits a high saturation flux density of 1.88 T, low coercivity of 42 A/m, very high Curie temperature of 1240 K, as well as low core loss of 770 W/kg at 10 kHz under maximum magnetization of 1 T.  相似文献   

7.
The crystalline structures, magnetic properties and magnetocaloric effect (MCE) of MnCo1−xGe alloys (0.02?x?0.2) have been reported. The crystalline structures of MnCo1−xGe (x?0.06) alloys are mainly of TiNiSi-type phase, and Ni2In-type structure dominates for x>0.06. With decreasing Co concentrations the saturated magnetization of these compounds decreases. Large low-field magnetic entropy change −ΔSM of about 2.3 J/kg K in MnCo0.94Ge alloy has been obtained for a magnetic field change of 1 T. Moreover, it is found that TiNiSi-type phase exhibits larger −ΔSM than Ni2In-type one. For MnCo0.94Ge alloy, considerable low-field refrigerant capacity (RC) (∼460 mJ/cm3), low coercivity and easy synthesis make these alloys potential candidates for near-room temperature magnetic refrigerants.  相似文献   

8.
We report on the magnetization, magnetocaloric effect, magnetic ordering temperatures, saturation magnetic moments and anisotropy of sputter-deposited GdxCr1−x alloys with Gd atomic concentrations, x, ranging from 0.13 to 0.52. The complex magnetic nature of the Gd-Cr films was revealed from the M×H isotherms, which do not show saturation even at an applied field of 70 kOe and a temperature of 2 K and do not exhibit a linear behavior at higher temperatures. For some of the samples, the isotherms were used to determine the isothermal entropy variation as a function of temperature, for a change of 50 kOe in the applied magnetic field. The saturation magnetic moment varies with x and follows the dilution law, implying that the Cr atoms do not contribute to the total moment of the Gd-Cr alloys. Both static magnetization and dynamic susceptibility measurements reveal the existence of a magnetic glassy behavior in the alloys, which occurs below a freezing temperature. The existence of anisotropy at low temperatures for all samples was revealed by their M×H hysteresis loops from which the in-plane coercive fields, Hc, were determined. A monotonical increase in Hc with increasing Gd concentration was observed.  相似文献   

9.
We have investigated the influence of aluminium substitution for iron on the magnetic properties of amorphous and nanocrystalline Fe88-x Zr7B5Al x alloys (x = 0, 1, 3, 5, 7 and 9 at.%). Thermomagnetic curves show an increase of Curie and crystallization temperature of amorphous phase with the increase of the content of aluminium in the alloy. The increase of aluminium content up to 3 at.% Al does not cause the decrease of a saturation magnetization in the as-quenched sample. In addition, magnetostriction of the annealed alloys has been studied. Also, the increase of aluminium content in the alloy causes an increase of the magnetostriction constant.  相似文献   

10.
The temperature and field dependent magnetic properties of melt-spun amorphous Fe89−xyZr11Bx(Co,Mn)y (x=5, 10 and 0≤y≤10) alloys in the temperature range 5-1200 K are reported. The Curie temperature and saturation magnetization at room temperature increase (decrease) almost linearly with Co (Mn) addition. With increasing Co concentration, the room temperature coercivity increases at the rate of 2.26 (0.28) A/m per at% for the x=5 (10) samples. The high-field magnetic susceptibility and local magnetic anisotropy decrease (increases) rapidly with increasing Co (Mn) concentration. The thermomagnetic curves show a marked increase in magnetization above 850 K corresponding to the crystallization of α-FeCo (α-Fe) phase in samples containing Co (Mn). The Curie temperature of the crystalline phase increases (remains same) with increasing Co (Mn) concentration with the formation of α-FeCo (α-Fe). Addition of Co up to 10 at% in Fe-Zr-B improves the room temperature saturation magnetization from 0.56 to 1.2 T, and Curie temperature from 315 to 476 K. Also, the coercivity increases with Co addition from 1.27 to 23.88 A/m for x=5 and from 7.64 to 10.35 A/m for x=10 alloy. The non-collinear spin structures that characterize Fe rich Fe-Zr-B amorphous alloys have been used to describe the observed results.  相似文献   

11.
In the present study, the magnetic properties and microstructures of newly developed Fe–Cu–Si–B alloys prepared by annealing the melt-spun ribbon have been studied. The average size and number density of nanocrystalline grains were about 20 nm and 1023–1024 m−3, respectively. The saturation magnetic flux density Bs for the present alloy is more than 1.8 T, that is about 10% larger than that of Fe-based amorphous alloys. Moreover, core loss P of the present alloy is about half of that of Si-steel up to B=1.7 T.  相似文献   

12.
Structure and magnetic properties of Nb-doped (FeZrB)100−xNbx alloy are investigated by X-ray diffraction (XRD), differential scanning calorimetry and vibrating sample magnetometer. The fully amorphous structure of the as-quenched ribbons is confirmed by the XRD pattern. With increasing Nb, the glass transition temperature and the onset crystallization temperature are increased, indicating increased stability of the amorphous structure. For x=1, the saturation magnetization of the ribbons is 125.7 emu/g and the optimized annealing temperature increases from 550 to 630 °C. The morphology of the crystallized phases is observed by scanning electron microscopy. The results show that nanocrystalline α-Fe grains are dispersed in the amorphous matrix.  相似文献   

13.
The magnetic texture of (Fe1?x Cox)76Mo8Cu1B15 (x = 0, 0.5) nanocrystalline alloys is studied for different amounts of nanocrystalline grains. The originally amorphous alloys were annealed in external longitudinal and transverse magnetic fields of 0.025 T and 0.8T, respectively. Mössbauer measurements were carried out at room and liquid nitrogen temperatures in order to gain information on the hyperfine interactions and the orientation of the magnetization. The obtained results are compared with those received from zero-field annealed samples. Magneto-optical Kerr effect (MOKE) was applied for the investigation of possible changes at the surface of the x = 0 ribbon as a function of annealing temperature and applied magnetic field. A combination of uniaxial anisotropy, which originates from the shape anisotropy, and four-fold anisotropy, which is a contribution from crystallites of nanometre size embedded in the residual amorphous matrix, is unveiled.  相似文献   

14.
We report here our magnetic study on amorphous GdxY1?x alloys with x = 0.17 and 0.70. The alloy with x = 0.17 is paramagnetic down to 4.2 K. For x = 0.70, magnetization shows a peak in low magnetic fields (H < 0.3 T). Magnetic saturation is difficult to obtain even for fields up to 15 T. An extrapolated value gives a moment of 6.2 μBGd at. Tc is about 70 K. This led us to the conclusion that ferromagnetic and antiferromagnetic clusters are present in this alloy. The results are discussed by comparing them with crystalline Gd-Y alloys and amorphous Gd-Al, Gd-Au, etc. The effect of Y seems to be specific.  相似文献   

15.
Thin films of Ge100−xFex (x in at%) alloys, fabricated by thermal co-evaporation, have an amorphous structure at compositions x<∼40, although an unidentified crystalline phase with an FCC symmetry also exists at low Fe content. Magnetization versus temperature curves show that saturation magnetization is non-zero (1 to 2.5 emu/cm3) and remains nearly unchanged up to the highest measured temperature of 350 K. Magnetic hysteresis loops at room temperature show a typical ferromagnetic shape, complete saturation occurring by 1–2 kOe. These results may indicate ferromagnetic ordering at room temperature. No definite tendency is observed in the compositional dependence of saturation magnetization.  相似文献   

16.
A new amorphous alloy has been recently introduced which shows a saturation magnetic induction Bs of 1.64 T which is compared with Bs=1.57 T for a currently available Fe-based amorphous alloy and decreased magnetic losses. Such a combination is rare but can be explained in terms of induced magnetic anisotropy being reduced by the alloy's chemistry and its heat treatment. It has been found that the region of magnetization rotation in the new alloy is considerably narrowed, resulting in reduced exciting power in the magnetic devices utilizing the material. Efforts to increase Bs also have been made for nanocrystalline alloys. For example, a nanocrystalline alloy having a composition of Fe80.5Cu1.5Si4B14 shows Bs exceeding 1.8 T. The iron loss at 50 Hz and at 1.6 T induction in a toroidal core of this material is 0.46 W/kg which is 2/3 that of a grain-oriented silicon steel. At 20 kHz/0.2 T excitation, the iron loss is about 60% of that in an Fe-based amorphous alloy which is widely used in power electronics. Another example is a Fe85Si2B8P4Cu1 nanocrystalline alloy with a Bs of 1.8 T, which is reported to exhibit a magnetic core loss of about 0.2 W/kg at 50 Hz and at 1.5 T induction. This article is a review of these new developments and their impacts on energy efficient magnetic devices.  相似文献   

17.
The microstructure and magnetic properties of Finemet-type Fe72.5Cu1M2V2Si13.5B9 (M=Nb, Mo, (NbMo), (MoW)) alloys have been systematically studied. Results show that the nanocrystalline alloy with M=NbMo has the smallest grain size of about 8 nm. The order of the effect of Nb, Mo and W additions in decreasing the α-Fe grain size in nanocrystalline alloys is Nb>Mo>W. The best DC soft magnetic properties are obtained in the alloy with M=Nb. In the case of AC soft magnetic properties, the Nb alloy also exhibits a very low core loss comparing with typical Finemet alloy. Therefore, the Nb alloy is suitable for use as a transformer core material. In addition, it is shown that a narrow grain size distribution and a uniform dispersion of α-Fe grains in the amorphous matrix are very crucial for the development of new Finemet-type nanocrystalline alloys with good soft magnetic properties.  相似文献   

18.
The Fe73.5Cu1Nb3Si13.5B9 FINEMET alloy has been prepared by the rapid solidification technique. The critical behaviour of this alloy in the amorphous as well as in its nanocrystalline states has been studied near their respective Curie temperatures. From the values of the critical exponents one can conclude that the alloy behaves like a 3D Heisenberg ferromagnet in the amorphous and nanocrystalline states. But there exists a slight increase in the value of β for the alloy annealed at 823 K (the nanocrystalline state) as observed in most of the amorphous alloys.  相似文献   

19.
In the present paper long-term stability of magnetic properties of different amorphous and nanocrystalline alloys was studied. Magnetic properties were measured for annealed samples (300<Ta<900 K) directly after annealing and after long-term aging at room temperature. It was shown that for the Fe75.3Cu1Zr1.7Si13B9 alloy magnetic permeability of the optimized samples is stable during 8 years aging. For Fe86−xNbxB14 alloys the observed long-term instability (3 years aging) is due to annealing out of free volume leading to formations of small iron clusters coherent with the amorphous surroundings.  相似文献   

20.
Magnetic properties of the Ce2Fe17−xMnx, x=0–2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5–1 are helical antiferromagnets and those with 1<x?2 are helical ferromagnets or helical antiferromagnets at low and high T, respectively. Mn ions in the system carry average magnetic moment of 3.0±0.2 μB that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce2Fe17−xMnx compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce2Fe17−xMnx helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce2Fe17−xMnx, x=0.5–2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号