首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase diagrams of a two-sublattice Ising metamagnet at finite temperature in a mixed longitudinal field and a transverse magnetic field are investigated by the use of an effective-field theory (EFT) with correlations. In addition to the second-order transition lines, the first-order transition lines are also presented in the phase diagrams, since the Gibbs free energy can be calculated numerically. The results show that there is no fourth-order critical line in the phase diagrams given by using EFT as found by using mean-field theory (MFT). The tricritical lines and their projection in the thx plane obtained by using EFT are also quite different from those by using MFT. Only one type of phase diagram is obtained by using EFT while three kinds of phase diagrams are obtained by using MFT, which indicates that only the first kind of phase diagrams obtained by using MFT is reliable. Furthermore, it is shown that the region of first-order transitions increases as the transverse magnetic field hx decreases.  相似文献   

2.
The ground state magnetic properties of a two-sublattice Ising metamegnet in both external longitudinal and transverse fields are studied within the mean-field approach. A parameter α=(Z1J1+Z2J2)/(Z1J1Z2J2) which reflects the strength ratio of spin coupling in the plane and in adjacent planes is introduced. The ground state energy, the longitudinal staggered magnetization, the longitudinal total magnetization and the transverse total magnetization are calculated. The ground state phase diagrams in Ωh and Ωα plane are presented. The results show that when Ω is given, the longitudinal critical magnetic field increases when α decreases; the phase transition changes always from first order to second order with increase in the longitudinal magnetic field h or decrease in α. The reentrant phenomenon occurs in the range α?−0.66, Ω?0.21, h?0.78.  相似文献   

3.
Magnetization curves of Tb1−xGdxMn6Sn6 compounds (0?x?1) have been measured for aligned powder samples in the temperature range 4.2–300 K in pulsed magnetic fields up to 30 T. Temperature and concentration dependences of the magnetocrystalline anisotropy constants K1 and K2 and concentration dependence of the temperature of spontaneous spin-reorientation transition have been determined. Using these data, we estimated the contribution of the manganese and terbium atoms to the magnetic anisotropy of Tb1−xGdxMn6Sn6 and analyzed the origin of the appearance of field-induced first-order magnetic phase transition in these compounds.  相似文献   

4.
Bayram Deviren  Mehmet Erta? 《Physica A》2010,389(10):2036-2047
An effective-field theory with correlations has been used to study critical behaviors of a mixed spin-1 and spin-2 Ising system on a honeycomb and square lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. The thermal behavior of the sublattice magnetizations of the system are investigated to characterize the nature of (continuous and discontinuous) of the phase transitions and obtain the phase transition temperature. The phase diagrams are presented in the (Δ/|J|, kBT/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.  相似文献   

5.
We have investigated the magnetic phase diagram of polycrystalline and single-crystal La1−xSrxMnO3 near 0.46≤x≤0.50. It turns out that for x<0.48, the polycrystalline material is ferromagnetic (FM), but for x≥0.48, incipient charge ordering takes place along with antiferromagnetism. At x=0.48, the ferromagnetic-antiferromagnetic phase transition in ceramics occurs at less than 85 kOe but requires significantly larger field for increasing x. These observations are in contrast to what is found in the single crystals, which are all FM.  相似文献   

6.
The nearest neighbour J1(x) and the next-neighbour super-exchange J2(x) interactions are evaluated by using the mean field theory for Mg1−xBxO (B=Co and Ni) systems. The magnetic energy E(x) is obtained. A magnetic phase diagram of the Mg1−xBxO (B=Co and Ni) solid solutions with 0?x?1 is drawn by high-temperature series expansions (HTSE) combined with the Padé approximants method (PA). The critical exponents associated with the magnetic susceptibility (γ) and with the correlation length (ν) are deduced in order phase.  相似文献   

7.
The temperature dependence of the resistance of composite samples (1−x)La0.67Sr0.33MnO3+xYSZ with different YSZ doping level x was investigated at magnetic fields 0-3 T, where YSZ represents yttria-stabilized zirconia. Results show that the YSZ dopant does not only adjust the metal-insulator transition temperature, but also increases the magnetoresistance effect. With increase of YSZ doping level for the range of x<2%, the metal-insulator transition temperature values TP of the composites decrease, but TP increases with increase of x further for the range of x>2%. Meanwhile, in the YSZ-doped composites, a broad metal-insulator transition temperature region was found at zero and low magnetic field, which results in an obvious enhanced magnetoresistance in the temperature range 10-350 K. Specially, a larger magnetoresistance value was observed at room temperature at 3 T, which is encouraging with regard to the potential application of magnetoresistance materials.  相似文献   

8.
A series of Ni43Mn46Sn11−xSbx (x=0, 1, and 3) alloys were prepared by an arc melting method. The martensitic transition shifts to higher temperature with the increasing Sb content. The isothermal magnetization curves and Arrott plots around martensitic transition temperatures show a typical metamagnetic behavior. Under a low applied magnetic field of 10 kOe, large magnetic entropy changes around the martensitic transition temperature are 10.4, 8.9, and 7.3 J/kg K, for x=0, 1, and 3, respectively. The origin of the large magnetic entropy changes and potential application for Ni43Mn46Sn11−xSbx alloys as working substances in magnetic refrigeration are discussed.  相似文献   

9.
In this study, magnetic and magnetocaloric properties of Pr0.68Ca0.32−xSrxMnO3 (x=0, 0.1, 0.18, 0.26 and 0.32) compounds were investigated. X-ray results indicated that all the samples have a single phase of orthorhombic symmetry. The orthorhombic unit cell parameters increase with the increase in Sr content. Large negative magnetic entropy changes (−26.2 J/kg K at 38 K and 5 T for x=0 and −6.5 J/kg K at 83 K and 6 T for x=0.1) were attributed to ultrasharp metamagnetic transitions. The peak value of ΔSm decreased from −4.1 J/kg K for x=0.18 sample to −2.4 J/kg K for x=0.32 at 1 T magnetic field.  相似文献   

10.
The crystalline structures, magnetic properties and magnetocaloric effect (MCE) of MnCo1−xGe alloys (0.02?x?0.2) have been reported. The crystalline structures of MnCo1−xGe (x?0.06) alloys are mainly of TiNiSi-type phase, and Ni2In-type structure dominates for x>0.06. With decreasing Co concentrations the saturated magnetization of these compounds decreases. Large low-field magnetic entropy change −ΔSM of about 2.3 J/kg K in MnCo0.94Ge alloy has been obtained for a magnetic field change of 1 T. Moreover, it is found that TiNiSi-type phase exhibits larger −ΔSM than Ni2In-type one. For MnCo0.94Ge alloy, considerable low-field refrigerant capacity (RC) (∼460 mJ/cm3), low coercivity and easy synthesis make these alloys potential candidates for near-room temperature magnetic refrigerants.  相似文献   

11.
We have examined magnetizations as a function of temperature and magnetic field in layered perovskite manganites La2−2xSr1+2xMn2O7 single crystals (x=0.313, 0.315, 0.318, 0.320 and 0.350) in order to determine the phase boundary between two ferromagnets (one is an uniaxial ferromagnet whose easy axis is parallel to the c-axis and the other is a planar ferromagnet whose easy axis is within the ab-plane) and following results are obtained: (i) all the present manganites exhibit magnetic transitions from a ferromagnet to a paramagnet at 76, 107, 116, 120 and 125 K for x=0.313, 0.315, 0.318, 0.320 and 0.350, respectively; (ii) for x=0.318, 0.320 and 0.350, the magnetic structure is a planar ferromagnet below Curie temperature; (iii) for x=0.313 and 0.315, the magnetic structure changes from an uniaxial to a planar ferromagnet at 66 and 85 K, respectively. From the results described above we have constructed the magnetic phase diagram of layered perovskite manganite La2−2xSr1+2xMn2O7 (0.313?x?0.350).  相似文献   

12.
We propose a method for determination of the distribution function P(j) of the coupling energy density j in polycrystalline textured ferromagnetic (F)/antiferromagnetic (AF) film systems. P(j) governs the entire film coupling J and the exchange bias field He and was not measurable until now. The method is verified by torquemetry in a high magnetic field and by reversing its rotation sense. The transition to a new magnetic steady state after rotation reversal is analyzed within a Stoner–Wohlfarth model including thermal relaxation. This transition is completed earlier for strongly coupled grains than for grains with smaller j, which is reflected in the torque curves. We determined P(j) for a sputtered NiFe(16 nm)/IrMn(0.8 nm) film at T=50 K in the hysteretic range of coupling energies and found that P strongly decreases for increasing j.  相似文献   

13.
The Pr1−xPbxMnO3 (x=0.1–0.5) perovskites have been fabricated by solid-state reaction. The X-ray diffraction patterns show that the samples are of single phase with orthorhombic structure. The field-cooled (FC) and zero-field-cooled (ZFC) thermomagnetic curves measured at low field and low temperatures exhibit the spin glass-like state. The Curie temperature of samples increased with increase in Pb content. The maximum magnetic entropy change |ΔSm|max reaches the giant values of 3.91 and 3.68 J/kg K for quite low magnetic field change of 1.35 T for the samples x=0.1 and 0.4, respectively. The resistance measurements show that there is insulator–metal phase transition on the R(T) curves for samples with x?0.3. The giant magnetoresistance effect is also observed for all samples studied.  相似文献   

14.
The La1−xCexMn2Si2 compounds (x=0.35 and 0.45) exhibit an antiferromagnetic-ferromagnetic transition caused by the changes in distance between Mn atoms due to temperature changes. A field-induced transition from antiferromagnetic state to ferromagnetic state at a critical field, which decreases with increase in temperature, can also be induced by applying a magnetic field. In this paper our aim is to study the magnetization and magnetocaloric effect, close to transition temperatures. Our subsidiary aim is to examine the temperature dependence of critical field and ferromagnetic fraction of compounds. The variation of magnetocaloric effect with temperature is correlated with the ferromagnetic-antiferromagnetic phase coexistence. Our final aim is to examine the harmony between magnetocaloric effect values calculated both by the Maxwell theory and by the Landau theory.  相似文献   

15.
The temperature dependence of the resistivity for composite samples of (1−x)La0.67Ba0.33MnO3+xYSZ(LBMO/YSZ) with different YSZ doping level of x has been investigated in a magnetic field range of 0-7000 Oe, where the YSZ represents yttria-stabilized zirconia (8 mol% Y2O3+92 mol% ZrO2). With increasing YSZ doping level, the range of 0-10%, the metal-insulator transition temperature (TP) decreases. However, the resistivity, specially the low temperature resistivity, increases. Results also show that the YSZ doping level has an important effect on a low field magnetoresistance (LFMR). In the magnetic field of 7000 Oe, a room temperature magnetoresistance value of 20% was observed for the composite with a YSZ doping level of 2%, which is encouraging for potential application of CMR materials at room temperature and low field.  相似文献   

16.
Magnetic properties of the Ce2Fe17−xMnx, x=0–2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5–1 are helical antiferromagnets and those with 1<x?2 are helical ferromagnets or helical antiferromagnets at low and high T, respectively. Mn ions in the system carry average magnetic moment of 3.0±0.2 μB that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce2Fe17−xMnx compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce2Fe17−xMnx helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce2Fe17−xMnx, x=0.5–2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated.  相似文献   

17.
The ground-state magnetic properties of the spin-2 transverse Ising model with a longitudinal crystal field are studied within the framework of mean-field theory (MFT) and effective-field theory (EFT), respectively. The phase diagrams and magnetization curves are examined in detail. It is found that the system exhibits a tricritical behavior in the ground-state phase diagrams. Some interesting phenomena have been found, especially the first-order phase transition from one ordered phase to the other ordered phase, which is due to the high spin. The spin correlation has important effect on the magnetic properties of the system. We also find that the ground-state phase diagrams of the spin-2 transverse Ising model are very different from those of the spin-3/2 transverse Ising model.  相似文献   

18.
We have studied anomalous peaks observed in magnetocaloric −ΔS(T) curves for systems that undergo first-order magnetostructural transitions. The origin of those peaks, which can exceed the conventional magnetic limit, R ln(2J+1), is discussed on thermodynamic bases by introducing an additional-exchange contribution (due to exchange constant variation arising from magnetostructural transition). We also applied a semiphenomenological model to include this additional-exchange contribution in Gd5Si2Ge2- and MnAs-based systems, obtaining excellent results for the observed magnetocaloric effect.  相似文献   

19.
The magnetic properties of the Ca1−xMnxO systems in the range 0?x?1 have been studied by mean field theory and high-temperature series expansions (HTSEs). By using the first theory, we have evaluated the nearest neighbour and the next-neighbour super-exchange interaction J1(x) and J2(x) respectively, in the range 0.45?x?1. The corresponding classical exchange energy for magnetic structure is obtained for the Ca1−xMnxO systems. The HTSEs combined with the Padé approximants (PA) method is applied to the Ca1−xMnxO systems; we have obtained the magnetic phase diagrams (TN or TSG versus dilution x) in the range 0?x?1. The obtained theoretical results are in agreement with experimental ones obtained by magnetic measurements. The critical exponents associated with the magnetic susceptibility (γ) and the correlation lengths (ν) are deduced in the range 0?x?1.  相似文献   

20.
The study of the structural and magnetic phase diagram of the manganites La1−xAgxMnO3 shows similarity with the La1−xSrxMnO3 series, involving a metallic ferromagnetic domain at relatively high temperature (≈300 K). The Ag-system differs from the Sr-one by a much smaller homogeneity range (x≤1/6) and the absence of charge ordering. But the most important feature of the Ag-manganites deals with the exceptionally high magnetoresistance (−25%) at room temperature under 1.2 T, that appears for the composition x=1/6. The latter is interpreted as the coincidence of the optimal double exchange condition (Mn3+:Mn4+=2) with Tmax=300 K (maximum of the ρ(T) curve in zero field).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号