首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We give a new characterization for the convergence in distribution to a standard normal law of a sequence of multiple stochastic integrals of a fixed order with variance one, in terms of the Malliavin derivatives of the sequence. We also give a new proof of the main theorem in [D. Nualart, G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. 33 (2005) 177–193] using techniques of Malliavin calculus. Finally, we extend our result to the multidimensional case and prove a weak convergence result for a sequence of square integrable random vectors, giving an application.  相似文献   

2.
We obtain upper and lower bounds for the density of a functional of a diffusion whose drift is bounded and measurable. The argument consists of using Girsanov’s theorem together with an Itô–Taylor expansion of the change of measure. One then applies Malliavin calculus techniques in a non-trivial manner so as to avoid the irregularity of the drift. An integration by parts formula for this set-up is obtained.  相似文献   

3.
We provide a new non-parametric Fourier procedure to estimate the trajectory of the instantaneous covariance process (from discrete observations of a multidimensional price process) in the presence of jumps extending the seminal work of Malliavin and Mancino (2002, 2009). Our approach relies on a modification of (classical) jump-robust estimators of integrated realized covariance to estimate the Fourier coefficients of the covariance trajectory. Using Fourier–Féjer inversion we reconstruct the path of the instantaneous covariance. We prove consistency and a central limit theorem (CLT) and in particular that the asymptotic estimator variance is smaller by a factor 2/3 in comparison to classical local estimators.  相似文献   

4.
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the non-linear stochastic heat equation in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.  相似文献   

5.
In this paper we carry over the concept of reverse probabilistic representations developed in Milstein, Schoenmakers, Spokoiny [G.N. Milstein, J.G.M. Schoenmakers, V. Spokoiny, Transition density estimation for stochastic differential equations via forward–reverse representations, Bernoulli 10 (2) (2004) 281–312] for diffusion processes, to discrete time Markov chains. We outline the construction of reverse chains in several situations and apply this to processes which are connected with jump–diffusion models and finite state Markov chains. By combining forward and reverse representations we then construct transition density estimators for chains which have root-NN accuracy in any dimension and consider some applications.  相似文献   

6.
We define a covariance-type operator on Wiener space: for FF and GG two random variables in the Gross–Sobolev space D1,2D1,2 of random variables with a square-integrable Malliavin derivative, we let ΓF,G?〈DF,−DL−1G〉ΓF,G?DF,DL1G, where DD is the Malliavin derivative operator and L−1L1 is the pseudo-inverse of the generator of the Ornstein–Uhlenbeck semigroup. We use ΓΓ to extend the notion of covariance and canonical metric for vectors and random fields on Wiener space, and prove corresponding non-Gaussian comparison inequalities on Wiener space, which extend the Sudakov–Fernique result on comparison of expected suprema of Gaussian fields, and the Slepian inequality for functionals of Gaussian vectors. These results are proved using a so-called smart-path method on Wiener space, and are illustrated via various examples. We also illustrate the use of the same method by proving a Sherrington–Kirkpatrick universality result for spin systems in correlated and non-stationary non-Gaussian random media.  相似文献   

7.
In this article, a class of second-order differential equations on [0,1], driven by a γ-Hölder continuous function for any value of γ∈(0,1) and with multiplicative noise, is considered. We first show how to solve this equation in a pathwise manner, thanks to Young integration techniques. We then study the differentiability of the solution with respect to the driving process and consider the case where the equation is driven by a fractional Brownian motion, with two aims in mind: show that the solution that we have produced coincides with the one which would be obtained with Malliavin calculus tools, and prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure.  相似文献   

8.
Among Professor Kiyosi Itô’s achievements, there is the Itô–Nisio theorem, a completely general theorem relative to the Fourier series decomposition of Brownian motion. In this paper, some of its applications will be reviewed, and new applications to 1-soliton solutions to the Korteweg–de Vries (KdV for short) equation and Eulerian polynomials will be given.  相似文献   

9.
We use integration by parts formulas to give estimates for the Lp norm of the Riesz transform. This is motivated by the representation formula for conditional expectations of functionals on the Wiener space already given in Malliavin and Thalmaier (2006) [13]. As a consequence, we obtain regularity and estimates for the density of non-degenerated functionals on the Wiener space. We also give a semi-distance which characterizes the convergence to the boundary of the set of the strict positivity points for the density.  相似文献   

10.
We propose a generic framework for the analysis of Monte Carlo simulation schemes of backward SDEs. The general results are used to re-visit the convergence of the algorithm suggested by Bouchard and Touzi (2004) [6]. By keeping the higher order terms in the expansion of the Skorohod integrals resulting from the Malliavin integration by parts in [6], we introduce a variant of the latter algorithm which allows for a significant reduction of the numerical complexity. We prove the convergence of this improved Malliavin-based algorithm, and derive a bound on the induced error. In particular, we show that the price to pay for our simplification is to use a more accurate localizing function.  相似文献   

11.
In this paper, based on techniques of Malliavin calculus, we obtain an explicit bound for tail probabilities of a general class of exponential functionals. We apply the obtained results to derive asymptotic behaviors for the tail of the exponential functional of stochastic differential equations.  相似文献   

12.
This paper provides a simple approach for the consideration of quadratic BSDEs with bounded terminal conditions. Using solely probabilistic arguments, we retrieve the existence and uniqueness result derived via PDE-based methods by Kobylanski (2000) [14]. This approach is related to the study of quadratic BSDEs presented by Tevzadze (2008) [19]. Our argumentation, as in Tevzadze (2008) [19], highly relies on the theory of BMO martingales which was used for the first time for BSDEs by Hu et al. (2005) [12]. However, we avoid in our method any fixed point argument and use Malliavin calculus to overcome the difficulty. Our new scheme of proof allows also to extend the class of quadratic BSDEs, for which there exists a unique solution: we incorporate delayed quadratic BSDEs, whose driver depends on the recent past of the YY component of the solution. When the delay vanishes, we verify that the solution of a delayed quadratic BSDE converges to the solution of the corresponding classical non-delayed quadratic BSDE.  相似文献   

13.
14.
We present new results regarding the existence of density of the real-valued solution to a 3-dimensional stochastic wave equation. The noise is white in time and with a spatially homogeneous correlation whose spectral measure μ satisfies that , for some . Our approach is based on the mild formulation of the equation given by means of Dalang's extended version of Walsh's stochastic integration; we use the tools of Malliavin calculus. Let S3 be the fundamental solution to the 3-dimensional wave equation. The assumption on the noise yields upper and lower bounds for the integral and upper bounds for in terms of powers of t. These estimates are crucial in the analysis of the Malliavin variance, which can be done by a comparison procedure with respect to smooth approximations of the distribution-valued function S3(t) obtained by convolution with an approximation of the identity.  相似文献   

15.
In this paper we study rough differential equations driven by Gaussian rough paths from the viewpoint of Malliavin calculus. Under mild assumptions on coefficient vector fields and underlying Gaussian processes, we prove that solutions at a fixed time are smooth in the sense of Malliavin calculus. Examples of Gaussian processes include fractional Brownian motion with Hurst parameter larger than 1/4.  相似文献   

16.
We consider the invariant measure for finite systems of interacting branching diffusions with immigrations. We use Malliavin calculus in order to show that the intensity measure of the invariant measure admits a density which is continuous, one times partially differentiable and bounded provided the immigration measure is absolute continuous.  相似文献   

17.
Given a random variable FF regular enough in the sense of the Malliavin calculus, we are able to measure the distance between its law and any probability measure with a density function which is continuous, bounded, strictly positive on an interval in the real line and admits finite variance. The bounds are given in terms of the Malliavin derivative of FF. Our approach is based on the theory of Itô diffusions and the stochastic calculus of variations. Several examples are considered in order to illustrate our general results.  相似文献   

18.
Summary We consider a Lévy processX t and the solutionY t of a stochastic differential equation driven byX t; we suppose thatX t has infinitely many small jumps, but its Lévy measure may be very singular (for instance it may have a countable support). We obtain sufficient conditions ensuring the existence of a smooth density forY t: these conditions are similar to those of the classical Malliavin calculus for continuous diffusions. More generally, we study the smoothness of the law of variablesF defined on a Poisson probability space; the basic tool is a duality formula from which we estimate the characteristic function ofF.  相似文献   

19.
In this paper, we study the non-parametric estimation of the invariant density of some ergodic hamiltonian systems, using kernel estimators. The main result is a central limit theorem for such estimators under partial observation (only the positions are observed). The main tools are mixing estimates and refined covariance inequalities, the main difficulty being the strong degeneracy of such processes. This is the first paper of a series of at least two, devoted to the estimation of the characteristics of such processes: invariant density, drift term, volatility.  相似文献   

20.
An evaluation of a stochastic oscillatory integral with quadratic phase function and analytic amplitude function is given by using solutions of Jacobi equations. The evaluation will be obtained as an application of real change of variable formulas and holomorphic prolongations of analytic functions on a real Wiener space. On the way we shall see how a Jacobi equation appears in the evaluation by using the Malliavin calculus. Received: 27 July 1998 / Revised version: 14 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号