首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Josephson effect in a superconductor-insulator-ferromagnet-superconductor structure with a stepwise change in the transparency of the superconductor/ferromagnet interface has been investigated within the formalism of the Usadel equations. It is shown that, at a certain thickness of the ferromagnet layer, this feature leads to the formation of a point contact with an anomalous dependence of the critical current on the external magnetic field.  相似文献   

2.
徐茂杰  窦晓鸣 《中国物理 B》2010,19(6):67301-067301
This paper theoretically studies Josephson spin current through triplet superconductor/ferromagnet/triplet superconductor junctions. At the ferromagnet/superconductor interfaces, the ferromagnetic scattering potential gives rise to coupling between the Andreev bound states and lifts their spin degeneracy. These spin-split Andreev states carry the Josephson spin current through the junctions. The generated spin supercurrent can be controlled by the magnetization of a ferromagnetic thin layer and bias voltage across the junctions.  相似文献   

3.
When a spin-triplet superconductor is attached to a ferromagnet, the tunneling conductance depends not only on the degree of the spin polarization but also sensitively on the relative angles between the magnetic moment in ferromagnet and the d-vector in spin-triplet superconductor. We study theoretically the tunneling conductance in ferromagnet/triplet superconductors assuming three nodal unitary gap functions, which are promising candidates for the pairing symmetry of Sr2RuO4. Our results suggest that the d-vector direction in Sr2RuO4 may be detected by performing angular dependent tunneling spectroscopy in this hybrid structure. We also show that these three gap functions can be distinguished by their distinctive conductance spectra.  相似文献   

4.
Taking into account the nonequilibrium spin accumulation, we apply a quantum-statistical approach to study the spin-polarized transport in a two-dimensional ferromagnet/semiconductor/ferromagnet (FM/SM/FM) double tunnel junction. It is found that the effective spin polarization is raised by increasing the barrier strength, resulting in an enhancement of the tunneling magnetoresistance (TMR). The nonequilibrium spin accumulation in SM may appear in both antiparallel and parallel alignments of magnetizations in two FMs, in particular for high bias voltages. The effects of spin accumulation and TMR on the bias voltage are discussed.  相似文献   

5.
Within a scattering framework, a theoretical study is presented for the spin-polarized quasiparticle transport in ferromagnet/d-wave superconductor junctions. We find that the subgap conductance behavior is qualitatively different from a nonmagnetic junction, and can also be significantly different from those of a ferromagnet/s-wave junction. For a ballistic ferromagnet/d-wave superconductor junction, under appropriate conditions, a zero-bias conductance minimum could be achieved. In addition, a conductance maximum at finite bias could be evolved by interfacial scattering. For a normal-metal/ferromagnet/d-wave superconductor junction, conductance resonances are predicted.  相似文献   

6.
Tunneling conductance in clean ferromagnet/ ferromagnet/d-wave superconductor (F/F/d-wave S) double tunnel junctions is studied by use of four-component Bogoliubov-de Gennes equations. The novel Andreev reflection appears due to noncollinear magnetizations, in which the incident electron and the Andreev-reflected hole come from the same spin subband, resulting in spin-triplet pairing states near the F/S interface. In the highly polarized Fs case, the conductance within the energy gap exhibits a conversion from a zero-bias dip in the parallel magnetizations to a spilt zero-bias peak in the perpendicular magnetizations.  相似文献   

7.
Zhen-Zhen Huang 《中国物理 B》2022,31(10):107101-107101
We study the Kondo screening of a spin-1/2 magnetic impurity coupled to a superconductor, which is fabricated by combination of an s-wave superconductor, a ferromagnet and a semiconductor with Rashba spin—orbit coupling (RSOC). The proximity induced superconducting states include the s-wave and p-wave pairing components with the aids of RSOC, and the ferromagnet induces a Zeeman field which removes the spin degeneracy of the quasiparticles in the triplet states. Thus, the Kondo screening of magnetic impurity involves the orbital degrees of freedom, and is also affected by the Zeeman field. Using the variational method, we calculate the binding energy and the spin—spin correlation between the magnetic impurity and the electrons in the coexisting s-wave and p-wave pairing states. We find that Kondo singlet forms more easily with stronger RSOC, but Zeeman field in general decreases the binding energy. The spin—spin correlation decays fast in the vicinity of the magnetic impurity. Due to the RSOC, the spatial spin—spin correlation becomes highly anisotropic, and the Zeeman field can induce extra asymmetry to the off-diagonal components of the spin—spin correlation. Our study can offer some insights into the studies of extrinsic topological superconductors fabricated from the hybrid structures containing chains of magnetic impurities.  相似文献   

8.
We study the stationary Josephson effect in a ballistic superconductor/ferromagnet/superconductor junction for arbitrarily large spin polarizations. Due to the exchange interaction in the ferromagnet, the Andreev reflection is incomplete. We describe how this effect modifies the Josephson current in the crossover from a superconductor/normal metal/superconductor junction to a superconductor/half metal/superconductor junction.  相似文献   

9.
Ferromagnet/superconductor/ferromagnet (F/S/F) spin-valve systems in the dirty limit, described by Usadel equations, was theoretically investigated with respect to superconducting transition temperature. Their superconducting characteristics strongly depend not only on the mutual orientation and thickness of the ferromagnetic layers, but also on the interface transparency as well as magnetic scattering. Especially, the introduction of magnetic scattering drastically reduces the spin-valve effect in our work. The obtained results could be used to understand experimental values of and to provide guidelines for optimizing the experimental systems.  相似文献   

10.
We investigate the equilibrium spin transport in a ferromagnet/noncentrosymmetric superconductor (FM/NCS) junction where the NCS has a dominant triplet order parameter and helical edge state. Based on the symmetry analysis and numerical calculation, we demonstrate that there is a nonzero spin supercurrent flowing in the junction, which stems from the exchange coupling between the FM magnetization and triplet Cooper-pair spin. It is also found that a transverse spin current other than the helical edge spin current is flowing along the interface of the junction, and its polarization is related to the longitudinal spin supercurrent. Besides, an equilibrium Hall current is also shown to flow along the junction’s interface due to the broken time-reversal symmetry from the FM.  相似文献   

11.
We present a general formula for tunneling conductance in ballistic ferromagnet/ferromagnetic insulator/superconductor junctions where the superconducting state has the opposite spin pairing symmetry. The formula shows, correctly, that ferromagnetism has been induced by the effective mass difference between up- and down-spin electrons. This effectively mass mismatched ferromagnet and a standard Stoner ferromagnet have been employed in this paper. As an application of the formulation, we have studied the tunneling effect for junctions including a spin-triplet p-wave superconductor, where we choose a normal insulator for the insulating region, although our formula can be used for a ferromagnetic insulator. Then, we have been able to devote our attention to features of a ferromagnetic metal. The conductance spectra show a clear difference between the two ferromagnets depending upon the method of normalization of the conductance. In particular, an essential difference is seen in the zero-bias conductance peaks, reflecting the characteristics of each ferromagnet. From the obtained results, we suggest that the measurements of the tunneling conductance in the junction provide us with useful information about the mechanism of itinerant ferromagnetism in metals.  相似文献   

12.
We investigate the magnetic excitations for the magnetic problem arising from the absence of magnetic translation symmetry in one dimension due to the presence of an impurity layer embedded within a semi-infinite ferromagnet. A Heisenberg model is employed to investigate the possibility that localized modes can occur with an impurity layer implanted within a semi-infinite ferromagnet. No electronic effects are considered. The theoretical approach employs the matching procedure in the mean field approximation and determines the propagating and evanescent spin amplitude fields including the contribution due to an applied field. The results are used to calculate the energies of localized modes associated with the impurity layer and with the surface. Numerical examples of the modes are given and they are found to exhibit various effects due to the interplay between the impurity layer and surface modes. It is shown that more localized modes can occur and the modification of the spin wave spectra can be signaled by the appearance of surface and impurity modes, besides the bulk excitations. Also, the bulk spin fluctuations field, the spin waves localized on the surface as well as on impurity layer depend are shown to depend on the nature of the exchange coupling between spin sites, the values of spin sites and the position of the impurity layer from the surface.  相似文献   

13.
金霞  董正超  梁志鹏  仲崇贵 《物理学报》2013,62(4):47401-047401
通过求解磁性d波超导中的能隙和磁交换能的自洽方程, 研究磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森电流. 计算结果表明: 1)临界电流随中间的铁磁层厚度呈现出两种不同周期的振荡混合, 通过增强铁磁层中的磁交换能q0和铁磁/磁性d波超导界面处的势垒强度z0, 短周期分量可从长周期中分离出来, 反之, 通过降低q0z0, 长周期分量可从短周期中分离出来; 2)在两边磁性d波超导的磁化方向取平行时, 在取一些特定的铁磁层厚度下, 磁性d波超导中的磁交换能可增强系统的临界电流. 关键词: 磁性d波超导体 铁磁体 约瑟夫森电流  相似文献   

14.
The feasibility of a superconducting spin valve based on superconductor/ferromagnet proximity effect is discussed. Experimental results obtained by the authors to date in studies of this problem are presented.  相似文献   

15.
郁华玲  彭菊  金本喜 《中国物理 B》2010,19(8):87203-087203
<正>We extend the Blonder,Tinkham and Klapwijk theory to the study of the inverse proximity effects in the normal mental/superconductor/ferromagnet structures.In the superconducting film,there are the gapless superconductivity and the spin-dependent density of states both within and without the energy gap.It indicates an appearance of the inverse-proximity-effect-induced ferromagnetism and a coexistence of ferromagnetism and superconductivity near the interface.The influence of exchange energy in the ferromagnet and barrier strength at the superconductor/ferromagnet interface on the inverse proximity effects is discussed.  相似文献   

16.
The aim of this paper is to explain the non monotonic temperature dependence of the self-consistent superconducting gap of ferromagnet/superconductor/ferromagnet (F/S/F) trilayers with weak ferromagnets in the parallel alignment (equivalent to F/S bilayers). We show that this is due to Andreev bound states that compete with the formation of a minigap. Using a recursive algorithm we discuss in detail the roles of various parameters (thicknesses of the superconductor and ferromagnets, relative spin orientation of the ferromagnets, exchange field, temperature, disorder, interface transparencies).Received: 23 January 2004, Published online: 29 June 2004PACS: 74.78.Na Mesoscopic and nanoscale systems - 74.45. + c Proximity effects; Andreev effect; SN and SNS junctions - 74.50. + r Tunneling phenomena; point contacts, weak links, Josephson effects  相似文献   

17.
When studying the nuclear magnetic resonance (NMR) of 51V nuclei in superconductor/ferromagnet thin film heterostructures, anomalous behavior of the NMR signal was observed. This effect was manifested as a systematic distortion of the high-field wing of the resonance line. We consider this to be the first experimental evidence for penetration of ferromagnetism into a superconductor.  相似文献   

18.
Along the lines of Blonder, Tinkham and Klapwijk, we investigate the charge transport through ferromagnet/two-dimensional electronic gas/d-wave superconductor (F/2DEG/S) junctions in the presence of Rashba spin-orbit (SO) coupling and focus our attention on the interplay between spin polarization and spin precession. At zero spin polarization, the spin-mixing scattering resulted from Rashba SO coupling decreases the zero-bias conductance peak. Under spin polarization, spin precession introduces novel Andreev reflection, which competes with the effect of spin-mixing scattering. If the F layer is a half metal, the later effect is overwhelmed by that of novel Andreev reflection. As a result, the zero-bias conductance dip caused by spin polarization is enhanced, and at strong Rashba SO coupling, a split zero-bias peak is found in the gap. In an intermediate region where the two effects are comparable with each other, the zero-bias conductance shows a reentrant behavior as a function of Rashba SO coupling.  相似文献   

19.
The mutual interplay between superconductivity and magnetism in superconductor/ferromagnet heterostructures may give rise to unusual proximity effects beyond current knowledge. Especially, spin-triplet Cooper pairs could be created at carefully engineered superconductor/ferromagnet interfaces. Here we report a giant proximity effect on spin dynamics in superconductor/ferromagnet/superconductor Josephson junctions. Below the superconducting transition temperature T_C, the ferromagnetic resonance field at X-band(~9.0 GHz) shifts rapidly to a lower field with decreasing temperature. In strong contrast, this phenomenon is absent in ferromagnet/superconductor bilayers and superconductor/insulator/ferromagnet/superconductor multilayers. Such an intriguing phenomenon can not be interpreted by the conventional Meissner effect. Instead, we propose that the strong influence on spin dynamics could be due to spin-transfer torque associated with spin-triplet supercurrents in ferromagnetic Josephson junctions with precessing magnetization.  相似文献   

20.
Hong Li 《中国物理 B》2022,31(12):127301-127301
The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator (TI) ferromagnet/superconductor (FM/SC) junction. The tunneling conductance and shot noise are calculated based on the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk theory. It is found that the magnetic gap in ferromagnet can enhance the Andreev retro-reflection but suppress the specular Andreev reflection. The gate potential applied to the electrode on top of superconductor can enhance the two types of reflections. There is a transition between the two types of reflections at which both the tunneling conductance and differential shot noise become zero. These results provide a method to realize and detect experimentally the intra-band specular Andreev reflection in thin film TI-based FM/SC structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号