首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and magnetic properties of LaFe13−xSix and Co-substituted LaFe11.8−xCoxSi1.2 alloys prepared by melt spinning, as well as of LaFe11.57Si1.43Hx hydrides prepared by reactive milling are investigated. The hysteresis in the temperature- and field-induced phase transitions is significantly reduced as compared with conventional bulk alloys, which makes these materials very attractive for magnetic refrigerant applications. The unusual combination of features characteristic of first- and second-order phase transitions in the La(Fe,Si)13-based compounds is discussed on the basis of density-functional electronic structure calculations.  相似文献   

2.
Phase formation, structure, and the magnetocaloric effect (MCE) in as-cast LaFe11.5Si1.5Bx (x=0.5, 1.0) compounds have been studied. The Curie temperatures, TC, are ∼211 and 230 K for x=0.5 and 1.0, respectively, which are higher than that of annealed LaFe11.5Si1.5 (TC=183 K), while the maximum magnetic entropy changes at the respective TC under a magnetic field change of 0-5 T are 7.8 and 5.8 J/(kg K). Wavelength dispersive spectrometry (WDS) analysis shows that only a small fraction of boron atoms is dissolved in the NaZn13-type structure phase, and that the compositions of the as-cast LaFe11.5Si1.5Bx (x=0.5, 1.0) alloys are much different from the intended nominal compositions. These as-cast alloys exhibit second-order magnetic phase transitions and low MCEs. However, based on the relative cooling power, the as-cast LaFe11.5Si1.5Bx alloys are promising candidates for magnetic refrigerants over a wide temperature range.  相似文献   

3.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

4.
The effect of Fe on the phase and magnetocaloric property of LaFe11.6*xSi1.4B0.1 alloys with x = 1.0–1.4 have been studied. The results show that the excess of Fe will make the α-Fe phases increase, but the easy corrosion LaFeSi phase reduces in LaFe11.6*xSi1.4B0.1 alloys. All LaFe11.6*xSi1.4B0.1 alloys keep the first-order magnetic phase transition. The saturation magnetizations of LaFe11.6*xSi1.4B0.1 alloys with x > 1 are much higher than LaFe11.6Si1.4B0.1 alloy under 2T magnetic field. This results in the maximum isothermal magnetic entropy changes, and the relative cooling power of LaFe11.6*xSi1.4B0.1 alloys is bigger than for LaFe11.6Si1.4B0.1 alloys.  相似文献   

5.
The magnetic properties of a set of LaFe13?x?yCoySix compounds (x = 1.6 ? 2.6; y = 0, y = 1.0) have been investigated using magnetic measurements, thermal expansion, 57Fe Mössbauer spectroscopy and high resolution neutron powder diffraction methods over the temperature range 10–300 K. The natures of the magnetic transitions in these LaFe13?x?yCoySix compounds have been determined. The Curie temperatures of LaFe13?xSix were found to increase with Si content from TC = 219(5) K for Si content x = 1.6 to TC = 250(5) K for x = 2.6. Substitution of Co for Fe in LaFe10.4Si2.6 resulted in a further enhancement of the magnetic ordering temperature to TC = 281(5) K for the LaFe9.4CoSi2.6 compound. The nature of the magnetic transition at the Curie temperature changes from first order for LaFe11.4Si1.6 to second order for LaFe10.4Si2.6 and LaFe9.4CoSi2.6. The temperature dependences of the mean magnetic hyperfine field values lead to TC values in good agreement with analyses of the magnetic measurements. The magnetic entropy change, ?ΔSM, has been determined from the magnetization curves as functions of temperature and magnetic field (ΔB = 0 ? 5 T) by applying the standard Maxwell relation. In the case of LaFe12.4Si1.6 for example, the magnetic entropy change around TC is determined to be -ΔSM ~ 14.5 J kg?1 K?1 for a magnetic field change Δ B = 0 ? 5 T.  相似文献   

6.
RFe13−xSix (R = Pr, Nd and Gd) alloys with x = 2.5–5 have been synthesized and characterized in a magnetic field up to 17 kOe and in a temperature range 10–1173 K to ascertain whether they might be useful as high temperature, high-energy permanent magnet materials. It was found that a body-centered tetragonal (BCT) Ce2Ni17Si9-type structure forms in PrFe13−xSix alloys when x ⩾ 4. The Curie temperatures Tc of this BCT phase are in a range 50–90 K, higher than that of the corresponding PrCo13−xSix BCT phase (∼ 20 K). The PrFe13−xSix alloys with x⩾ 4 show spin reorientation at cryogenic temperatures (15–47 K) and exhibit significant coercivity in loose powder samples below their spin-reorientation temperature. Using the information about the magnetization of LaFe13−xSix BCT alloys, one can estimate the moment of Pr ion in PrFe13∼-xSix alloys. It is found to be very close to that in PrCo13−xSix BCT alloys, around 2 μ2/atom. For RNd or Gd, the RFe13−xSix alloys occur only as mixtures of RFe2Si2, R(Fe, Si)11 and FeSi. The Ce2Ni17Si9-type structure cannot be formed in these alloys even when x = 5. The low Tc for the PrFe13−xSix alloys precludes their use as a permanent magnet material, except perhaps at low temperature.  相似文献   

7.
The influence of cobalt on the microstructural, magnetic and magnetocaloric properties of LaFe11.5−xCoxSi1.5C0.2 (x=0.50–0.85) compounds was investigated. The ingots were prepared by using a vacuum induction melting furnace. Before annealing, a large amount of 1:13 phase was distinctly observed. Nearly single 1:13 phase was obtained after annealing at 1353 K for only 3 days. The easy formation of 1:13 phase in the annealing process could be attributed to carbon doping. The Curie temperature (TC) increases linearly with increasing the cobalt content. Although the maximum magnetic entropy changes of the compounds decrease rapidly when TC rises from 275 to 298 K, and it decreases mildly when TC continues to rise. Two composite refrigerants based on the compounds are proposed. Their entropy changes remains approximately constant over the temperature range from 266 to 292 K and 289 to 309 K.  相似文献   

8.
In order to gain better insight into the origin of the observed differences between Fe3−xCrxAl and Fe3−xCrxSi, alloys of Fe3−xCrxAl0.5Si0.5 (x=0, 0.125, 0.250, 0.375 and 0.5) were prepared and studied by means of X-ray and neutron diffraction as well as by magnetization measurements. Electronic structure calculations of these alloys have been performed by means of TB-LMTO-ASA method. It was expected, and experimentally verified, that the presence of silicon and aluminum atoms in 1:1 proportion will result in the independence of the lattice parameter on the iron/chromium concentration. All samples have been proved to be a single phase of the DO3-type of structure. Theoretical and experimental results indicate that chromium atoms locate preferentially in B sublattice. Cr magnetic moments are oriented antiparallel to Fe magnetic moments. Neutron measurements show a linear dependence of the magnetic moments of Fe(A,C), Fe(B) and Cr(B) as a function of Cr concentration. However the calculated total magnetic moment decreases faster with chromium content than indicated by the experiment.  相似文献   

9.
Crystal structure, magnetism and magnetocaloric properties of LaFe11.7Si1.3Ny (y=0, 1.3) compounds have been studied by X-ray diffraction and magnetic measurements. The LaFe11.7Si1.3Ny compounds present a cubic NaZn13-type structure. Insertion of 1.3 nitrogen atoms per LaFe11.7Si1.3 formula increases the lattice parameter and Curie temperature from 11.467 to 11.733 Å and from 190 to ∼230 K, respectively. Besides, the absorption of nitrogen drives drastically the magnetic transition from first to second order and accordingly strongly decreases the magnetocaloric effect compared to the parent alloy. Under an external field change of 5 T, the value of isothermal entropy change −ΔS is about 28 and 3.5 J/kg K for LaFe11.7Si1.3 and LaFe11.7Si1.3N1.3, respectively, close to their Curie temperature. However, the relative cooling power RCP(S) of the nitride is about half that of the parent alloy.  相似文献   

10.
Melt-spun ribbons of Co69Fe7Si14−xNbxB10 alloys with x=0, 2 and 4 have been prepared and characterized for structure and soft magnetic properties. Ribbons with x=0 and x=2 are found to be completely amorphous whereas the ribbon with x=4 contains irregular shaped faulted Co2Si orthorhombic phase with grain size of about 100 nm. Nb addition is found to decrease the degree of amorphicity and induce perpendicular anisotropy, deteriorating the soft magnetic and magnetoimpedance properties.  相似文献   

11.
The magnetic phase transitions and the magnetocaloric effects in MnNi1−xCoxGe (x=0.38 and 0.40) alloys were investigated. The substitution of Co for Ni in the MnNiGe antiferromagnet results in the metamagnetic transitions from antiferromagnetic to ferromagnetic state, which associates with very small thermal and magnetic hystereses. Positive and negative values of magnetic entropy changes are exhibited around the metamagnetic transition temperature and Curie temperature, respectively. The relatively large refrigerant capacity in low magnetic field along with the good reversibility suggest that MnNi1−xCoxGe (x=0.38 and 0.40) alloys are potential candidates for magnetic refrigeration.  相似文献   

12.
The effect of Si/Ge ratio on resistivity and thermopower behavior has been investigated in the magnetocaloric ferromagnetic Gd5SixGe4−x compounds with x=1.7-2.3. Microstructural studies reveal the presence of Gd5(Si,Ge)4-matrix phase (5:4-type) along with traces of secondary phases (5:5 or 5:3-type). The x=1.7 and 2.0 samples display the presence of a first order structural transition from orthorhombic to monoclinic phase followed by a magnetic transition of the monoclinic phase. The alloys with x=2.2 and 2.3 display only magnetic transitions of the orthorhombic phase. A low temperature feature apparent in the AC susceptibility and resistivity data below 100 K reflects an antiferromagnetic transition of secondary phase(s) present in these compounds. The resistivity behavior study correlates with microstructural studies. A large change in thermopower of −8 μV/K was obtained at the magneto-structural transition for the x=2 compound.  相似文献   

13.
The base alloys of nominal composition (Nd0.75Pr0.25)yFebalanceBx (y=10−9.2 and x=6−19.2) were chosen to study the influence of RE/B ratio, smaller than stochiometric composition on magnetic properties of over quenched and annealed ribbons. From X-ray diffraction analysis of these ribbons, the α-Fe and Fe3B phases were observed along with (Nd,Pr)2Fe14B major phase. The average grain size was calculated using these patterns as: 35 nm for α-Fe, 45 nm for (Nd,Pr)2Fe14B and 22 nm for Fe3B particles. TEM analysis also supported the nano distribution of the above phases. These X-ray graphs support the idea of exchange coupling between hard and soft phases responsible for the observed magnetic properties. In these ribbons the saturation magnetization Js and remnant magnetization Jr increases from 1.19 T to 1.66 T and from 0.65 T to 0.91 T, respectively as RE/B ratio increases. The increase in Js and Jr may be attributed to the presence of exchange coupling between these phases. The corresponding coercivity jHc decreases from 673.33 to 271.33 k Am−1. The maximum energy product (BH)max initially increases from 72.42 kJ m−3to 109.85 kJ m−3 up to RE/B≈1 and then decreases to 58.5 kJ m−3, depending on the shape of second quadrant BH loop. The coercivity mechanism observed from initial hysteresis curve was considered to be nucleation of domain wall.  相似文献   

14.
Samples of Fe100−xGax (x=8.3, 17.9, 20.5 and 23.3) were prepared by rapid solidification from the melt using a single Cu roller. X-ray diffraction studies of all samples showed them to be single phase with the disordered BCC structure. No evidence of superlattice reflections from D03 ordering was observed for any of the samples. Room-temperature 57Fe Mössbauer effect spectra indicated that all samples were ferromagnetically ordered. Spectra were fit to distributions of hyperfine fields. The x=8.3 sample showed a hyperfine field distribution that was single peaked and indicated a reasonably random distribution of local Fe environments. The x=17.9 and 20.5 samples showed hyperfine field distributions that were bimodal and indicated two distinct local Fe environments. The x=23.3 sample showed three distinct field components. It is suggested that the x=8.3, 17.9 and 20.5 alloys are primarily a disordered BCC phase. The x=8.3 alloy shows a small amount of short-range Ga–Ga pairing, while this short-range pairing is significantly greater in the x=17.9 and 20.5 alloys. The three field components in the x=23.3 alloy correspond well to the two sites associated with the D03 phase and a third component corresponding to a remaining L12 phase suggesting the presence of at least short-range D03 clustering in this alloy.  相似文献   

15.
In FeSiAl alloys, when Si substitutes for Al, important changes take place in the magnetism as well as in the structural properties. Alloys in the two composition series Fe75Al25−xSix (x=0, 7.5, 12.5, 17.5, 25) and Fe70Al30−xSix (x=0, 9, 15, 21, 30) were prepared by induction melting; afterwards they were crushed and then annealed in order to recover the DO3 stable phase. The deformed FeAl samples show larger lattice parameters than the ordered ones; however, this difference (Δa) decreases when Si substitutes for Al until it becomes zero (i.e. until the ordered samples and the deformed ones have the same lattice parameters). This trend is the same for both sample series and does not depend on the Fe content of the alloy. However, the magnetization has a different behaviour depending on the Fe content. For deformed Fe75Al25−xSix alloys the saturation magnetization decreases with increasing Si content while for Fe70Al30−xSix deformed alloys the saturation magnetization has a plateau in which the saturation magnetization values do not vary.  相似文献   

16.
The structure, microstructure, magneto-structural transition and magnetocaloric effect have been investigated in series of (Gd5−xZrx)Si2Ge2 alloys with 0≤x≥0.20. X-ray powder diffraction analysis revealed the presence of orthorhombic structure for Zr containing alloys at room temperature in contrast to the monoclinic structure observed in the parent Gd5Si2Ge2 alloy. The microstructural studies reveal that, low Zr addition (x≤0.1) resulted in low volume fraction of detrimental Gd5Si3-type secondary phase compared to that present in the parent alloy. All the Zr containing alloys have shown the presence of only second order magnetic transition unlike the parent alloy showing both first order structural and second order magnetic transition. A moderate (ΔS)M value of −5.5 J/kg K was obtained for the x=0.05 alloy at an enhanced operating temperature of 292 K compared to −7.8 J/kg K at 274 K of the parent alloy for an applied field of 2 T. The interesting feature of Zr (x=0.05) containing alloy is the wide operating temperature range of ∼25 K than that of ∼10-12 K for the parent, which resulted in enhanced net refrigerant capacity of 103 J/kg compared to that of 53 J/kg for the parent alloy.  相似文献   

17.
The structure and magnetic properties of La1−xTbxMn2Si2 (0≤x≤0.3) were studied by X-ray powder diffraction and DC magnetization measurements. All the compounds crystallize in ThCr2Si2-type structure. Substitution of Tb for La led to a linear decrease in the lattice constants and the unit-cell volume. A ferromagnetic phase for x≤0.15, and an antiferromagnetic phase for x=0.3 have been observed at about room temperature, whereas the compounds with x=0.2 and 0.25 exhibit a magnetic phase transition from ferromagnetism to antiferromagnetism.  相似文献   

18.
The high-temperature phase transition is analyzed according to the DSC of as-cast LaFe11.7 Si1.3 compound and the X-ray patterns of LaFe11.7Si1.3 compounds prepared by high-temperature and short-time annealing. Large amount of 1:13 phase begins to appear in LaFe11.7Si1.3 compound annealed near the melting point of LaFeSi phase (about 1422?K). When the annealing temperature is close to the temperature of peritectic reaction (about 1497?K), the speed of 1:13 phase formation is the fastest. The phase relation and microstructure of the LaFe11.7Si1.3 compounds annealed at 1523?K (5?h), 1373?K (2?h)?+?1523?K (5?h), and 1523?K (7?h) +1373?K (2?h) show that longer time annealing near peritectic reaction is helpful to decrease the impurity phases. For studying the influence of different high-temperature and short-time annealing on magnetic property, the Curie temperature, thermal, and magnetic hystereses, and the magnetocaloric effect of LaFe11.7Si1.3 compound annealed at three different temperatures are also investigated. Three compounds all keep the first order of magnetic transition behavior. The maximal magnetic entropy change ΔSM (T, H) of the samples is 12.9, 16.04, and 23.8?J?kg?1?K?1 under a magnetic field of 0–2?T, respectively.  相似文献   

19.
A series of Gd(1−x)Bx alloys have been prepared by arc melting method. After introducing small quantity of B atom in Gd, the Curie temperature of these alloys increase while the magnetic entropy changes are almost same as that of Gd. The refrigerant capacities of these alloys are also greater than that of Gd. These results suggest that Gd(1−x)Bx alloys may be utilized as refrigerant in household magnetic refrigeration.  相似文献   

20.
The influences of boron addition on the phase formation, Curie temperature and magnetic entropy change of the NaZn13-type La(Fe0.9Si0.1)13 compound have been investigated. Eight boron containing La(Fe0.9Si0.1)13Bx samples were prepared with x=0, 0.03, 0.06, 0.1, 0.2, 0.3, 0.5 and 0.6, respectively. Experimental results show that a small amount of B addition in La(Fe0.9Si0.1)13 forms the solid solution NaZn13-type structure phase by substituting B for Si or doping B into interstitial position of the lattice, preserves its giant magnetocaloric effects due to their first-order structural/magnetic transition, as well as increase its Curie temperature Tc slightly. The maximum magnetic entropy changes in the magnetic field change of 0–1.6 T are around 20 J kg–1 K–1 for the samples with Boron addition less than 0.3, while improving the Curie temperatures by 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号