首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Considering certain interesting features in the previously reported 166Er Mössbauer effect, and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in the ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8–300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in features due to magnetic ordering in the plot of magnetic susceptibility χ versus temperature T at low temperatures. The χ(T) data reveal that there is a pseudo-low-dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic order setting in at a lower temperature (3.8 K). A new finding in the χ(T) data is that, for H∥〈1 1 0〉 but not for H∥〈0 0 1〉, there is a broad shoulder in the range 8–20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Mössbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal the complex nature of magnetism of this compound.  相似文献   

2.
Physical properties of NdAu2Ge2, crystallising with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric and electrical transport measurements as well as by neutron diffraction. The compound exhibits antiferromagnetic ordering below TN=4.5 K with a collinear magnetic structure of the AFI-type. The neodymium magnetic moments are parallel to the c-axis and amount to 1.04(4) μB at 1.5 K. The observed magnetic behaviour is strongly influenced by crystalline electric field effect.  相似文献   

3.
ErCu2Si2 crystallises in the tetragonal ThCr2Si2-type crystal structure. In this paper results of magnetometric, electrical transport, specific heat as well as neutron diffraction are reported. Results of electrical resistivity and specific heat measurements performed at low temperature yield existence of magnetic ordering roughly at 1.3 K. These results are in concert with neutron diffraction measurements, which reveal simple antiferromagnetic ordering between 0.47 and 1.00 K. At temperatures ranging from 1.00 up to 1.50 K an additional incommensurate magnetic structure was observed. The propagation vector k=(0;0;0.074) was proposed to describe magnetic reflections within the amplitude modulated magnetic structure. Basing on specific heat studies the crystal field levels splitting scheme and magnetic entropy were calculated.  相似文献   

4.
Temperature and field-dependent magnetization measurements on polycrystalline CeMnCuSi2 reveal that the Mn moments in this compound exhibit ordering with a ferromagnetic (FM) component ordered instead of the previously reported purely antiferromagnetic (AFM) ordering. The FM ordering temperature, Tc, is about 120 K and almost unchanged with external fields up to 50 kOe. Furthermore, an AFM component (such as in a canted spin structure) is observed to be present in this phase, and its orientation is modified rapidly by the external magnetic field. The Ce L3-edge X-ray absorption result shows that the Ce ions in this compound are nearly trivalent, very similar to that in the heavy fermion system CeCu2Si2. Large thermomagnetic irreversibility is observed between the zero-field-cooled (ZFC) and field-cooled (FC) M(T) curves below Tc indicating strong magnetocrystalline anisotropy in the ordered phase. At 5 K, a metamagnetic-type transition is observed to occur at a critical field of about 8 kOe, and this critical field decreases with increasing temperature. The FM ordering of the Mn moments in CeMnCuSi2 is consistent with the value of the intralayer Mn–Mn distance RaMn–Mn=2.890 Å, which is greater than the critical value 2.865 Å for FM ordering. Finally, a magnetic phase diagram is constructed for CeMnCuSi2.  相似文献   

5.
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies.  相似文献   

6.
In this work neutron diffraction studies of Tb2Rh3Si5 compound are reported. The compound crystallizes in the monoclinic crystal structure of Lu2Co3Si5-type. At 1.5 K an antiferromagnetic ordering with a propagation vector k=(1/2;1/2;1/2) was observed. The Tb magnetic moments of 9.8(2) μB form a non-collinear magnetic structure. In the vicinity of Néel temperature of 8 K a change of the magnetic ordering is evidenced. The change seems to be connected with phase transition from commensurate to incommensurate sine-wave modulation of the Tb magnetic moments.  相似文献   

7.
Evolution of structure and magnetocaloric properties in ball-milled Gd5Si2Ge2 and Gd5Si2Ge2/0.1 wt% Fe nanostructured powders were investigated. The high-energy ball-milled powders were composed of very fine grains (70–80 nm). Magnetization decreased with milling time due to decrease in the grain size and randomization of the magnetic moments at the surface. The magnetic entropy change (ΔSM) was calculated from the isothermal magnetization curves and a maximum value of 0.45 J/kg K was obtained for 32 h milled Gd5Si2Ge2 alloy powder for a magnetic field change of 2 T while it was still low in Fe-contained alloy powders. The thermo-magnetic measurements revealed that the milled powders display distribution of magnetic transitions, which is desirable for practical magnetic refrigerant to cover a wide temperature span.  相似文献   

8.
Temperature (4.2–260 K) and magnetic field (0–50 kOe) dependencies of the DC electrical resistance, DC magnetization, and AC magnetic susceptibility of (Sm0.65Sr0.35)MnO3 prepared from high purity components have been studied. (Sm0.65Sr0.35)MnO3 undergoes a temperature-induced transition between low-temperature ferromagnetic metallic and high-temperature paramagnetic insulating-like states. A magnetic field strongly affects this transition resulting in a metallic state and “colossal” magnetoresistance in the vicinity of the metal↔insulator transition. Magnetic and electric properties of (Sm0.65Sr0.35)MnO3 are different compared to those reported earlier for similar composition, which is attributable to the purity of the starting materials and/or different process of synthesis. The character of phase transformations observed in (Sm0.65Sr0.35)MnO3 is compared to that reported for Gd5(SixGe4−x) intermetallic alloys with a true first order phase transition.  相似文献   

9.
The magnetic properties of the PrPd2Ge2 and NdPd2Ge2 compounds have been investigated by magnetic measurements, specific heat measurements and neutron diffraction experiments. The PrPd2Ge2 compound orders antiferromagnetically below TN=5.0(2) with an original modulated magnetic structure characterized by a magnetic cell three times larger than the chemical one by tripling of the c parameter. The palladium atom is non magnetic and the Pr moments are parallel to the c-axis with a value of ≈2.0 μB at 2 K. The specific heat measurements clearly detect a low temperature transition for the NdPd2Ge2 compound, interpreted as a Nd sublattice antiferromagnetic ordering below 1.3(2) K.  相似文献   

10.
The crystal structure and magnetocaloric effect of Gd5SixSn4−x   (with x=2.4x=2.4, 2.6 and 2.8) alloys were studied by means of X-ray power diffraction (XRD) and magnetic measurements. From the XRD results, these alloys adopt a Gd5Si4-type structure for x=2.8x=2.8, Gd5Si4-type and Gd5Si2Ge2-type mixed structures for x=2.4x=2.4 and 2.6, while some minor phases can also be found. The Curie temperatures of the Gd5SixSn4−x increases gradually when x increases from 276 K for x=2.4x=2.4, to 301.5 K for x=2.8x=2.8. Magnetic entropy changes of these alloys at a magnetic field change of 0–1.8 T are 1.88, 2.26 and 1.69 J/kg K for x=2.4x=2.4, 2.6 and 2.8, respectively. The temperature-dependent XRD analysis shows that there is no crystallographic transition for these alloys, which can explain their low magnetic entropy changes.  相似文献   

11.
Determination of Curie temperature by plotting magnetic moment vs. temperature curves requires a small applied field, which influences the measurement and temporarily disturbs the temperature of the sample especially for highly magnetocaloric materials. The Arrott plot technique was therefore used in order to determine the Curie temperature for a magnetocaloric Gd5Si2.7Ge1.3 (x=0.675) single crystal sample. This technique was compared with other methods such as the inflection point technique and the line projection method. The results show how applied magnetic field influences the determination of Curie temperature. Using the Arrott plot the second-order transition Curie temperature for Gd5Si2.7Ge1.3 was determined to be 304 K.  相似文献   

12.
We report an infrared reflection spectroscopy study of La1/2Ca1/2MnO3 over a broad frequency range and temperature interval which covers the transitions from the high temperature paramagnetic to ferromagnetic and, upon further cooling, to antiferromagnetic phase. The structural phase transition, accompanied by a ferromagnetic ordering at TC=234 K, leads to enrichment of the phonon spectrum. A charge ordered antiferromagnetic insulating ground state develops below the Néel transition temperature TN=163 K. This is evidenced by the formation of charge density waves and opening of a gap with the magnitude of 2Δ0=(320±15) cm−1 in the excitation spectrum. Several of the infrared active phonons are found to exhibit anomalous frequency softening. The experimental data suggest coexistence of ferromagnetic and antiferromangetic phases at low temperatures.  相似文献   

13.
Magnetization curves of Tb1−xGdxMn6Sn6 compounds (0?x?1) have been measured for aligned powder samples in the temperature range 4.2–300 K in pulsed magnetic fields up to 30 T. Temperature and concentration dependences of the magnetocrystalline anisotropy constants K1 and K2 and concentration dependence of the temperature of spontaneous spin-reorientation transition have been determined. Using these data, we estimated the contribution of the manganese and terbium atoms to the magnetic anisotropy of Tb1−xGdxMn6Sn6 and analyzed the origin of the appearance of field-induced first-order magnetic phase transition in these compounds.  相似文献   

14.
The shifts of the magnetic and charge ordering transition temperatures caused by Nd substitution for Y in Nd2/3Ca1/3MnO3 CMR narrow-band perovskite manganite have been studied. At low temperatures, three different long-range magnetic orderings consistent with a phase separation scenario have been observed in the doped compound (Nd0.9Y0.1)2/3Ca1/3MnO3 by neutron-diffraction study: the antiferromagnetic orderings of PCE and DE types existing below ∼110 and ∼60 K, respectively, and the ferromagnetic one of B type existing below ∼42. Magnetic phase transformations temperatures as well as those of charge ordering have been found to be structural-dependent. Y-doping leads to the decrease of the anisotropy of the orthorhombic Pnma crystal lattice b/√2c, which causes a decrease of the indirect exchange parameters in the system and thus a decrease in the magnetic transformation temperatures for 20-30 K in the doped compound. Doping leads as well to the higher level of the coherent Jahn-Teller distortions of the MnO6 octahedra in the 200-300 K temperature region, which results in the increase of the charge ordering temperature for ∼80 K.  相似文献   

15.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

16.
We present the magnetic and thermal properties of a series of compounds RE2Al3Si2 for RE=Dy, Ho, Er, and REAlSi for RE=Pr, Ce. The 2–3–2 family crystallizes with themonoclinic Y2Al3Si2-type structure while the 1–1–1 family crystallizes in the body-centered tetragonal α-ThSi2-type structure. The measurements were done on single crystals, grown using high-temperature flux technique and molten Al as a solvent . Susceptibility and heat capacity data were taken from 1.8 to 200 K, from the heat capacity data, the isothermal magnetic entropy change was obtained. Our results indicate signal oscillations in magnetocaloric properties for those compounds, in particular, Dy2Al3Si2 that shows an anomaly that can be associated with a spin reorientation. Similar results are known for some Dy discilicides and dialluminades.  相似文献   

17.
Magnetic susceptibility, heat capacity and electrical resistivity measurements have been carried out on a new ruthenate, La2RuO5 (monoclinic, space group P21/c) which reveal that this compound is a magnetic semiconductor with a high magnetic ordering temperature of 170 K. The entropy associated with the magnetic transition is 8.3 J/mol K close to that expected for the low spin (S=1) state of Ru4+ ions. The low temperatures specific heat coefficient γ is found to be nearly zero consistent with the semiconducting nature of the compound. The magnetic ordering temperature of La2RuO5 is comparable to the highest known Curie temperature of another ruthenate, namely, metallic SrRuO3, and in both these compounds the nominal charge state of Ru is 4+.  相似文献   

18.
Polycrystalline samples of ternary rare-earth germanides R2Co3Ge5 (R=La, Ce and Pr) have been prepared and investigated by means of magnetic susceptibility, isothermal magnetization, electrical resistivity and specific heat measurements. All these compounds crystallize in orthorhombic U2Co3Si5 structure (space group Ibam). No evidence of magnetic or superconducting transition is observed in any of these compounds down to 2 K. The unit cell volume of Ce2Co3Ge5 deviates from the expected lanthanide contraction, indicating non trivalent state of Ce ions in this compound. The reduced value of effective moment (μeff≈0.95 μB) compared to that expected for trivalent Ce ions further supports valence-fluctuating nature of Ce in Ce2Co3Ge5. The observed temperature dependence of magnetic susceptibility is consistent with the ionic interconfiguration fluctuation (ICF) model. Although no sharp anomaly due to a phase transition is seen, a broad Schottky-type anomaly is observed in the magnetic part of specific heat of Pr2Co3Ge5. An analysis of Cmag data suggests a singlet ground state in Pr2Co3Ge5 separated from the singlet first excited state by 22 K and a doublet second excited state at 73 K.  相似文献   

19.
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization.  相似文献   

20.
The ferromagnetic-to-antiferromagnetic transition in the hexagonal (Hf1−xTix)Fe2 (0?x?1) intermetallic compounds has been investigated by 57Fe Mössbauer spectroscopy. At 10 K, the transition occurs within rather narrow concentration limits, around x=0.55–0.65. We found that the key factor governing the unexpected quick change of the magnetic structure is the magnetic frustration of the Fe(2a) sites. The magnetic frustration is caused by the noncollinearity of the Fe(6h) magnetic sublattice. The noncollinearity arises from the rotation of the magnetic moments due to the competition between the ferromagnetic exchange interactions and the antiferromagnetic Fe(6h)–Ti–Fe(6h) interaction. In the compounds with x=0.4–0.6, the temperature transitions to the antiferromagnetic state are observed. As an example, the Hf0.4Ti0.6Fe2 compound is completely antiferromagnetic above 200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号