首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Using the first-principles density-functional theory within the generalized gradient approximation (GGA), we have investigated the structural, elastic, mechanical, electronic, and optical properties and phase transition of CuInO2. Structural parameters including lattice constants and internal parameter, pressure effects and phase transition pressure were calculated. We have obtained the elastic coefficients, bulk modulus, shear modulus, Young's modulus and Poisson's ratio. We find that two phases of CuInO2 are indirect band gap semiconductors (F–Γ and H–Γ for 3R and 2H, respectively). Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity have been obtained for radiations of up to 30 eV.  相似文献   

2.
Barium W-type hexaferrite with composition Ba0.95R0.05Mg0.5Zn0.5CoFe16O27 where R=Y, Er, Ho, Sm, Nd, Gd, and Ce ions has been prepared by the double-sintering ceramic technique. Structure of the prepared samples has been characterized by the X-ray diffraction (XRD) technique. The XRD patterns at room temperature show the presence of secondary phase with the intensity of the secondary phase increasing with increasing ionic radius of the rare earth (RE) ions. The variation of the magnetic susceptibility (χM) with temperature in the range 300–750 K at different magnetic field intensities (1280, 1733 and 2160 Oe) was studied by using Faraday's method. The results show that the Curie temperature (TC) increases regularly with increasing RE ionic radius then decreases again, after which it reaches maximum value at Sm ion of radius ≈1.04 Å. This behavior was explained on the basis of the changes in Fe3+–O–Fe3+ superexchange interaction. The effective magnetic moment μeff. of the investigated samples was discussed in view of varying the RE element as well as the magnetization of different sublattices.  相似文献   

3.
The structural, electronic, elastic and thermodynamic properties of α-phase Na3N under pressure are investigated by performing first principles calculations within generalized gradient approximation. The elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio dependencies on pressure are also calculated. The thermodynamic properties of the α-phase Na3N are calculated using the quasi-harmonic Debye model. The dependencies of the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameter on pressure and temperature are investigated systematically in the ranges of 0–1 GPa and 0–100 K.  相似文献   

4.
Mechanical and magnetic properties of the ZnO/Fe2O3 ceramic varistors have been examined by using mechanical analyzer, digital microhardness tester and vibrating sample magnetometer. The initial stress–strain behavior is found to be linear (elastic) then becomes nonlinear (plastic deformation) without reaching the failure limit up to the maximum available stress (0.07 MPa). The compressive elastic modulus varies between 0.2 and 0.8 MPa with Fe addition up to 0.50. Furthermore, an approximately monotonically linear decrease in VHN with increasing Fe content up to 50% has been observed for all applied loads, which closely resembles the behavior of the true hardness and the surface energy. The magnetic measurements revealed an antiferromagnetic to paramagnetic to transition for all Fe doped samples. The Fe free sample showed paramagnetic behavior down to 2 K. The Neel temperature moderately increased from 18 K at 0.05% Fe to 25 K at 0.5% Fe. The magnetization (M) versus applied magnetic field (H) did not reach saturation for all samples up to 9 Tesla. The saturated magnetization (per Fe contents) is low and found to decreases linearly at a rate of (−35 emu/g-Fe) in a clear manifestation of the strengthening of the antiferromagnetic exchange interaction with increasing Fe contents.  相似文献   

5.
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization.  相似文献   

6.
Voltage-dependence of the tunneling magnetoresistance effect in the granular C60–Co films has been investigated for the samples with the current-perpendicular-to-plane geometry. The transport measurements under this geometry demonstrate that the granular C60–Co films show an unusual exponential bias voltage dependence of the magnetoresistance ratio down to zero voltage. Small characteristic energies of less than 10's meV are derived from the temperature dependences of the characteristic voltage in the exponential relationship. Considering the magnitudes of the voltage drop between Co nanoparticles and also the effect of cotunneling on the energy values, the characteristic energies for the voltage-induced degradation of the spin polarization are found to show a satisfactory agreement with that for the thermally-induced one. It can be reasonably expected that the onset of magnetic disorder to the localized d-electron spins at the interface region of the C60-based matrix (C60–Co compound) with Co nanoparticles leading to the unusual voltage and temperature dependence of the magnetoresistance ratio and the spin polarization at low temperatures.  相似文献   

7.
In this paper, we study the structural, electronic and elastic properties of the ternary AgSbTe2, AgSbSe2, Pr3AlC, Ce3AlC, Ce3AlN, La3AlC and La3AlN compounds using the full-potential linearized augmented plane wave (FP-LAPW) scheme and the pseudopotential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA). Results are given for the lattice parameters, bulk modulus, and its pressure derivative. The calculated lattice parameters are in good agreement with experimental results. We have determined the full set of first-order elastic constants, shear modulus, Young's modulus and Poisson's ratio of these compounds. Also, we have presented the results of the band structure, densities of states, it is found that this compounds metallic behavior, and a negative gap Г→R for Pr3AlC. The analysis charge densities show that bonding is of covalent–ionic and ionic nature for AgSbSe2 and AgSbTe2 compounds.  相似文献   

8.
This paper reports on a study performed in the temperature range 100–293 K, in air and in vacuum, for the amplitude and time dependences of the Young’s modulus and the internal friction (ultrasound damping) of biocarbon precursors prepared from white pine wood at two pyrolysis (carbonization) temperatures of 1000 and 2400°C. The measurements have been conducted by the resonance technique with a composite vibrator on samples cut along and across the tree growth direction. The desorption of molecules of the external medium at low amplitudes of ultrasonic vibrations has been found to produce the pronounced influence on the effective elastic modulus and elastic vibration decrement. The data obtained from acoustic measurements of the amplitude dependences of the elastic modulus have been used to estimate the microplastic properties of the samples. It has been shown that increasing the carbonization temperature gives rise to noticeable changes in the Young’s modulus and internal friction, as well as to reduction of the microplastic stress σ y of the biomaterial studied. The stress σ y of the samples cut across the growth direction has been found to be substantially smaller than that of the “longitudinal” samples. The elastic and microplastic properties of precursors prepared from white pine wood have been compared with those of the white eucalyptus wood.  相似文献   

9.
Nano-crystalline MnFe2−xAgxO4 (x = 0, 0.1, 0.2, 0.3 and 0.6) samples with average grain size of 4–7 nm were synthesized by a simple method based on decomposition of metal nitrates in presence of citric acid. The samples were characterized by different structural, magnetic and electrical measurements. Rietveld refinement of X-ray diffraction data confirmed cubic spinel structure of the samples. Results show that Ag doping decreases the crystallite size, magnetization and coercivity of nanoparticles. By increasing the Ag content in the samples the saturation magnetization shows interesting temperature dependent behavior. It was realized that magnetization of smaller particles show higher sensitivity to temperature variations than larger particles. DC electrical resistivity measurements in the temperature range of 300–650 K show that the resistivity first increases and then decreases by increasing the Ag content in the samples. Curie temperature (Tc) and polaron activation energy in ferromagnetic and paramagnetic regions were estimated by using resistivity curves.  相似文献   

10.
The present study concerns magnetic behavior of nanocrystalline Cu–Ni, Cu–Fe and Cu–Ni–Fe alloys prepared by mechanical alloying. It has been found that the magnetic properties e.g. Hc, Mr and Ms of the nanocrystalline alloys were significantly influenced by the changes in microstructural constituents, grain size and evolution of phases. Microstructural changes in the alloys have been effected by carrying out isothermal treatments on the mechanically alloyed products in the temperature range of 450–650 °C. Phase evolution in the samples after the isothermal treatments were identified and characterized by X-ray diffraction (XRD) and differential scanning calorimetric (DSC) techniques and the results were correlated with the magnetic properties of the alloys.  相似文献   

11.
We focused on obtaining MFe2O4 nanoparticles using ricin oil solution as surfactant and on their structural characterization and magnetic properties. The annealed samples at 500 °C in air for 6 h were analyzed for the crystal phase identification by powder X-ray diffraction using CuKα radiation. The particle size, the chemical composition and the morphology of the calcinated powders were characterized by scanning electron microscopy. All sintered samples contain only one phase, which has a cubic structure with crystallite sizes of 12–21 nm. From the infrared spectra of all samples were observed two strong bands around 600 and 400 cm−1, which correspond to the intrinsic lattice vibrations of octahedral and tetrahedral sites of the spinel structure, respectively, and characteristic vibration for capping agent. The magnetic properties of fine powders were investigated at room temperature by using a vibrating sample magnetometer. The room temperature MH hysteresis loops show ferromagnetic behavior of the calcined samples, with specific saturation magnetization (Ms) values ranging between 11 and 53 emu/g.  相似文献   

12.
With a view to investigate the elastic behavior of Nd0.67A0.33MnO3 (where A = Ca, Sr, Ba, Pb) manganite system, the samples were prepared by the sol gel method. After characterizing the samples structurally, a systematic investigation of ultrasonic longitudinal and transverse sound velocities of all the samples was undertaken by pulse transmission technique in the temperature range, 100-300 K. It has been found that all the elasticity parameters, including Debye temperature, are found to increase continuously with increasing ionic radii of the dopant ion. All the samples are also found to exhibit anomalies in both the longitudinal and transverse velocities near their ferro to para magnetic transition (TC) temperatures. Apart from this, Nd0.67Ca0.33MnO3 sample is also found to exhibit, a transition at its charge ordering temperature (Tco). An explanation for the observed elastic anomalies based on a mean field theory has been given.  相似文献   

13.
The lattice vibrations of II–VI compound ZnSe and III–V compound InSb have been calculated in the frame work of Banerjee-Varshni's second neighbour ionic [SNI] model utilizing critical-point phonons as an input to determine the required seven parameters and the experimentally determined three elastic constants C11, C12, C44 as restraints on the values of the parameters. A reinvestigation of the experimental elastic constants particularly C11 and C44 for ZnSe has been suggested. Results are presented for the dispersion curves along high symmetry directions. A reasonable agreement with the recently measured inelastic nutron scattering data is observed.  相似文献   

14.
Pb(Fe1/2Ta1/2)O3 (PFT) modified by rare-earth (La and Gd) ions has been synthesized in a single phase using a double-stage synthesis (i.e., Columbite) technique. Scanning electron micrographs (SEM) of the pellet samples have shown a significant change in their grain size and uniform distribution of Gd/La at the Fe-sites. The room temperature X-ray structural analysis shows that the reported cubic (or tetragonal) structure of PFT has been distorted to a monoclinic system on substitution of La/Gd at the Fe-site. Detailed studies of dielectric properties of the above compound on La/Gd substitution have shown strong dielectric dispersion at low frequency (i.e. relaxor behavior) with drastic change in transition temperature. Magnetic characterization shows that though the PFT sample displays an antiferromagnetic transition at ∼150 K, the rare-earth ions-substituted samples do not. Furthermore, temperature dependence of magnetization measurements shows that spin glass transition observed in PFT at low temperatures (5–20 K) does not exist in the La and Gd substituted PFT. Doping of Gd in PFT increases the sample magnetization, especially at low temperature.  相似文献   

15.
The crystalline and magnetic properties of 5% Mn and 5% Ni co-doped nanocrystalline ZnO particles, obtained by the co-precipitation method, are performed. X-ray diffraction data revealed that Zn0.90Mn0.05Ni0.05O crystallizes in the monophasic wurtzite structure. DC magnetization measurement showed that the samples are paramagnetic at room temperature. However, a large increase in the magnetization is observed below 50 K. This behavior, along with the negative value of Weiss constant obtained from the linear fit of magnetic susceptibility data below room temperature, indicates ferrimagnetic behavior. The ferrimagnetic properties observed at low temperature are explained and confirmed from ab-initio calculations using the Korringa–Kohn–Rostoker method combined with the coherent potential approximation.  相似文献   

16.
The structure, transport properties and the magnetoresistance behavior in the temperature interval 77–400 K of the perovskite-like lanthanum manganites La0.6Pb0.4−xMgx+yMnO3 (x=0, 0.1, 0.2 and y=0, 0.2) were investigated. Polycrystalline bulk samples were prepared by sol–gel self-combustion and subsequent heat treatment at 1000 °C for different times, 40, 80, 160 and 320 min. All manganites exhibit a peak in the resistivity around 200–250 K, below the ferromagnetic ordering temperature (320–330 K). An isotropic and negative magnetoresistance has been observed in all compounds. Magnetoresistance MR exhibits a peak in the temperature range 130–150 K, below SC–metal transition temperature. Magnitude of MR at the peaks was nearly 27% in the magnetic field of 2 T. At room temperature, a magnetoresistance of 9.5% for La0.6Pb0.2Mg0.2MnO3 composition was obtained. Longer heat treatment time enhanced the magnetorezistive properties.  相似文献   

17.
The nanocrystalline YIG samples with different particle sizes (20–40 nm) has been prepared using microwave–hydrothermal method. As synthesized powders were characterized using XRD and TEM. The powders were pressed and sintered at three different temperatures i.e., 700 °C/30 min, 800 °C/30 min, 900 °C/30 min, using microwave furnace. The sintered samples were characterized using XRD and TEM. The sintered samples are monophasic in nature with average grain size ranging in between 72 nm and 90 nm. The thermal variation of ultrasonic velocities [longitudinal (Vl) and transverse (VS)] and longitudinal attenuation (αl) has been measured on sintered samples by the pulse transmissionmethod at 1 MHz, in the temperature range of 300–600 K. The room temperature velocity is found to be grain size dependent and decreases with increasing temperature, except near the Curie temperature, TC, where a small anomaly is observed. The longitudinal attenuation (α1) at room temperature is also found to be more sample dependent. The temperature variation of ultrasonic longitudinal attenuation exhibits a sharp maximum just below Curie temperature (TC). The above observations were carried on in the demagnetized state, on the application of a saturation field of 380 mT, the anomaly observed in the thermal variation of velocities (longitudinal and transverse) and attenuation is found to disappears. The observed interaction of ultrasonic velocity with domain walls has been qualitatively explained with the help oftemperature variation of magneto-crystalline anisotropy constant (k1) and Landau’s theory.  相似文献   

18.
A coordinated temperature behavior of magnetic susceptibility and internal friction has been observed in the La2/3Ba1/3MnO3 manganite in the temperature region of the crystal phase separation 5–340 K. Stepwise temperature behavior of the susceptibility of the single crystal sample and corresponding singular behavior of the internal friction in the polycrystalline manganite have been found. These small-scale features of the temperature dependences of the susceptibility and the internal friction are considered to be a reflection of martensitic kinetics of the structural phase transformation R3¯c↔Imma in the 200 K temperature region.  相似文献   

19.
The study of high pressure (2 GPa) synthesized MgB2-based materials allows us to conclude that higher borides (with near MgB12 stoichiometry) and oxygen-enriched Mg–B–O inclusions can be pinning centers in nanostructural magnesium diboride matrix (with average grain sizes of 15–37 nm). It has been established that additions of Ti or SiC as well as manufacturing temperature can affect the size, amount and distribution of these inclusions in the material structure and thus, influence critical current density. The superconducting behavior of materials with near MgB12 stoichiometry of matrix is discussed.  相似文献   

20.
In the present paper, we have theoretically calculated the non linear elastic constants of single crystalline Ni NWs at very broad temperature range 20–300 K validating simple interaction potential model. The temperature dependent ultrasonic attenuation and other related properties are determined using their second and third order elastic constants (SOECs/TOECs). Where possible, the results are compared with experiments from literature. There is a correlation between the thermal conductivity and ultrasonic attenuation in the temperature range 100–300 K. Also, a correlation between the resistivity and ultrasonic attenuation in the temperature range 40–100 K has been established validating the theoretical approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号