首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Bi2O3-B2O3-ZnO-SiO2 (BB35SZ) glass effects on the sintering behavior and microwave magnetic properties of Cu-Bi-Zn co-doped Co2Z ferrites were investigated to develop low-temperature-fired ferrites. The glass wetting characteristics on the Co2Z ferrite surface, X-ray diffractometer, scanning electron microscopy and a dilatometer were used to examine the BB35SZ glass effect on Co2Z ferrite densification and the chemical reaction between the glass and Co2Z ferrites. The results indicate that BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Co2Z ferrites from 1300 to 900 °C. 3(Ba0.9Bi0.1O)·2(Co0.8Cu0.2O)·12(Fe1.975Zn0.025O3) ferrite with 2 wt% BB35SZ glass can be densified below 900 °C, exhibiting an initial permeability of 3.4. This process provides a promising candidate for multilayer chip magnetic devices for microwave applications.  相似文献   

2.
Y-type polycrystalline hexagonal ferrites Ba2Co2−xyZnxCuyFe12O22 with 0≤x≤2 and 0≤y≤0.8 were prepared by the mixed-oxide route. Single phase Y-type ferrite powders were obtained after calcinations at 1000 °C. Samples sintered at 1200 °C show a permeability that increases with the substitution of Zn for Co and display maximum permeability of μ′=35 at 1 MHz for x=1.6 and y=0.4. A resonance frequency fr=500 MHz is observed for Zn-rich ferrites with y=0 and 0.4. The saturation magnetization increases with substitution of Zn for Co. Addition of Bi2O3 shifts the temperature of maximum shrinkage down to T≤950 °C. Moreover, an increase of the Cu-concentration further lowers the sintering temperature to T≤900 °C, enabling co-firing of the ferrites with Ag metallization for multilayer technologies. However, low-temperature firing reduces the permeability to μ′=10 and the resonance frequency is shifted to 1 GHz. Thus substituted hexagonal Y-type ferrites can be used as soft magnetic materials for multilayer inductors for high frequency applications.  相似文献   

3.
We have studied sub-stoichiometric Ni-Cu-Zn ferrites with iron deficiency (i.e., <50mol% Fe2O3) of composition Ni0.20Cu0.20Zn0.60+zFe2−zO4−(z/2) with 0≤z≤0.06. The temperature of maximum shrinkage rate is shifted from T=1000 °C for z=0 towards lower temperatures down to T=900 °C for a sub-stoichiometric ferrite with z=0.02. Dense samples are obtained after firing at 900 °C for z>0 only. Sub-stoichiometric compositions (z>0) do not form single-phase spinel ferrites after sintering at 900 °C, but rather represent mixtures of CuO and a stoichiometric ferrite with slightly modified composition. The formation of small amounts of CuO at grain boundaries is demonstrated by XRD and SEM. The permeability is increased from μ=80 for stoichiometric ferrites (z=0) to μ=660 for z=0.02. The formation of CuO during sintering of sub-stoichiometric ferrites supports densification and is a prerequisite for low temperature firing of multilayer inductors. Addition of 1 wt% Bi2O3 as liquid phase sintering aid is required to provide sufficient densification of the stoichiometric ferrite (z=0) at 900 °C. Addition of 0.37 wt% Bi2O3 to a sub-stoichiometric ferrite (z=0.02) results in dense samples after firing at 900 °C; however, the microstructure formation is dominated by heterogeneous grain growth.  相似文献   

4.
Mixed manganese-zinc and nickel-zinc ferrites of composition Mn0.2Ni0.8−xZnxFe2O4 where x=0.4x=0.4, 0.5 and 0.6 have been synthesized by the citrate precursor technique. Decomposition of the precursor at temperatures as low as 500 °C gives the ferrite powder. The ferrites have been investigated for their electrical and magnetic properties such as saturation magnetization, initial permeability, Curie temperature, AC-resistivity and dielectric constant as a function of sintering temperature and zinc content. Structural properties such as lattice parameter, grain size and density are also studied. The mixed compositions exhibited higher saturation magnetizations at sintering temperatures as low as 1200 °C. While the Curie temperature decreased with zinc content, the permeability was found to increase. The AC-resistivity ranged from 105–107 Ω cm and decreased with zinc content and sintering temperature. The dielectric constants were lower than those normally reported for the Mn–Zn ferrites. Samples sintered at 1400 °C densified to about 94% of the theoretical density and the grain size was of the order of about 1.5 μm for the samples sintered at 1200 °C and increased subsequently with sintering temperature.  相似文献   

5.
The (Ni0.20Zn0.60Cu0.20)Fe1.98O4 ferrite was sintered using microwave sintering and conventional sintering technique, respectively. It was found that microwave sintering technique can effectively promote the forward diffusion of ions and thus accelerate the sintering process, resulting in the grain growth and the densification of matrix. At the low frequency of 100 kHz, the magnetizing contribution of domain wall motion is predominant, and compact and coarse matrixes are favorable for domain wall motion, giving rise to improvement of relative initial permeability and loss of ferrites. Using microwave sintering technique, for the (Ni0.20Zn0.60Cu0.20)Fe1.98O4 ferrite, the relative initial permeability μi of about 2000 and the relative loss factor tanδ/μi of about 8.7×10−6 at 100 kHz were achieved at only 980 °C sintering temperature. In addition, the sintering time of ferrites was reduced from 5 to 0.5 h by using microwave sintering technique.  相似文献   

6.
Z-type ferrites doped with La3+, Ba3−xLaxCo2Fe24O41 (x=0.00-0.30), were prepared by sol-gel method. The effect of the substitution La3+ rare-earth ions for Ba2+ ions on the microstructure, complex permeability, permittivity and microwave absorption of the samples was investigated. The results show that the major phase of the ferrites changed to Z-phase when sintering temperature was 1250 °C for 5 h. With the increase of the substitution ratio of La3+ ions from 0.0 to 0.3, the lattice parameters a and c increased gradually, which resulted in the change of the particle shape and size. The data of magnetism showed that the addition of La3+ ions make the ferrite a better soft magnetic material due to increase of magnetization (σs) and decrease of coercivity (Hc). The La3+ ions doped in the ferrite not only improved complex permeability and complex permittivity, but also microwave absorbency.  相似文献   

7.
In order to improve the magnetic properties of Z-type hexaferrites such as high initial permeability and high-quality factor, the nanocrystalline hexaferrite particles (NHPs) with the same chemical composition were introduced. The influence of NHPs on the densification, microstructures and magnetic properties of the ceramics prepared by a combined method was investigated. The results show that these NHPs, which spread around the micron-sized hexaferrite particles (MHPs), enhance the densification by increasing the inter-diffusion of the particles due to the increase of contact area; simultaneously, the grain growth in the direction of c-plane is dominant. Due to the special microstructure, high sintering density, and no addition sintering aids with different chemical composition, relatively high initial permeability and Q-factor than those of the samples with 1.0 wt% Bi2O3 were obtained in the samples with proper nanocrystalline particles sintered at 900 °C.  相似文献   

8.
The low temperature microwave sintered NiCuZn and MgCuZn ferrites with compositions Ni0.35Cu0.05Zn0.60Fe2O4 and Mg0.35Cu0.05Zn0.60Fe2O4 were synthesized by conventional mixed oxide method. NiCuZn and MgCuZn ferrite samples obtained showed better sintered densities at 950 and 900 °C, respectively. The scanning electron micrographs of both the ferrite samples appear to be very much similar. The magnitude of initial permeability of MgCuZn ferrite samples is found to be obviously higher than those of NiCuZn ferrite samples at all sintering temperatures. This is mainly due to the fact that MgCuZn ferrite has smaller magnetocrystalline anisotropy constant and magnetostrictive constant. NiCuZn ferrites have higher saturation magnetization than MgCuZn ferrites, which is due to the higher magnetic moment of NiCuZn ferrites. Our results indicate that the microwave sintering method seems to be a potential technique in the MLCI technology.  相似文献   

9.
Nb-doped Z-type hexaferrites (Ba3(Co0.4Zn0.6)2Fe24O41) with composition of Ba3(Co0.4Zn0.6)2Fe24O41+x Nb2O5 (where x=0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6 and 2.0 wt%) were prepared by a solid-state reaction method. The effects of different sintering temperature (Ts) and Nb2O5 content on the sintering behaviors, phase composing, microstructure, and magnetic properties of the samples were investigated. The results from X-ray diffraction and scanning electron microscopy show that as the amount of Nb2O5 additive increases, the major phase changes to Z-phase, Simultaneously, M-phase and a small amount of niobate phase appear. The Nb2O5 additive promotes the grain growth as reaction center at lower sintering temperature (1220 °C), but at higher temperature (1260 °C), niobate phase separated out in grain boundaries as secondary phase will restrain abnormal grain growth, so closed pores in grains are not formed. The Nb2O5 additive can enhance densification, improve initial permeability of hexaferrites by increasing the grain growth of hexaferrite and the displacement of ions in the sintering process due to the aberration and activation of crystal lattice, which is accompanied by the solubility of Nb5+ in the hexaferrites. A relative density of 96%, maximum initial permeability (32–33), minimum coercivity (454–455 A/m) and resonance frequency above 400 MHz were obtained for the sample with 0.8 wt% Nb2O5 sintered at 1260 °C for 6 h.  相似文献   

10.
The nanocrystalline Ni0.53Cu0.12Zn0.35Fe1.88O4 and BaTiO3 powders were prepared using Microwave-Hydrothermal (M-H) method at 160 °C/45 min. The as synthesized powders were characterized using the X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The size of the powders that were synthesized using M-H system was found to be ∼30 and ∼50 nm for ferrite phase and ferroelectric phases, respectively. The powders were densified using microwave sintering method at 900 °C/30 min. The ferrite and ferroelectric phases were observed from XRD and morphology of the composites was observed with the Scanning Electron Microscope (SEM).The magnetic hysteresis loops were recorded using the Vibrating Sample Magnetometer (VSM).The frequency dependence of real (μ′) and imaginary (μ″) parts of permeability was measured in the range of 1 MHz-1.8 GHz. The permeability decreases with an increase of BaTiO3 content at 1 MHz. The transition temperature (TC) of ferrite was found to be 245 °C. The TC of composite materials decreases with an increase in BaTiO3 content.  相似文献   

11.
Low-temperature-fired NiCuZn ferrites with the formula Ni0.45Cu0.2Zn0.35Fe2−xO4−3/2x with x values ranging from 0.00 to 0.25 in steps of 0.05 and sintered at 900 °C have been investigated in the present work. It was found that the content of Fe-deficiency could obviously influence the microstructure, sintering behavior, saturation magnetization, permeability and permittivity spectra properties of the ferrites. The variations were much different from those of the high-temperature-fired NiZn ferrites. And the corresponding mechanisms involved were discussed in detail. All-around consideration, the NiCuZn ferrite with 0.10 Fe-deficiency in composition had the best performances on sintering behavior and electromagnetic properties.  相似文献   

12.
Co0.5Zn0.5Fe2O4 nanoparticles were prepared using mechanical alloying (MA) and sintering. The crystallite size, coercivity, retentivity and saturation magnetization were also measured. The frequency dependence of dielectric and the magnetic parameters, namely, real permittivity ε′, loss tanget tan δ, real permeability μ′ and loss factor μ″ were measured at room temperature for samples sintered from 600 to 1000 °C, in the frequency range 10 MHz to 1.0 GHz. The results show that the crystallite size of the resulting products ranges between 16 and 67 nm for as-milled sample and the sample sintered at 1000 °C, respectively. The sample sintered at 1000 °C, measured at room temperature exhibited a saturation magnetization of 37 emu g−1. The values of permittivity remain constant within the measured frequency, but vary with sintering temperature. The permeability values, on the other hand however vary with both the sintering temperature and the frequency, thus, the absolute value of the permeability decreased after the natural resonance frequency.  相似文献   

13.
W-type barium hexaferrites with compositions of Ba1Co0.9Zn1.1Fe16O27 and Ba0.8La0.2Co0.9Zn1.1Fe16O27 were synthesized by the sol-gel method. The electromagnetic properties and microwave absorption behavior of these two ferrites were studied in the 2-18 GHz frequency range. The microstructure and morphology of the ferrites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The complex permittivity spectra, the complex permeability spectra and microwave reflection loss were measured by a microwave vector network analyzer. The XRD patterns show that the main phase of the Co2W ferrite forms without other intermediate phases when calcined at 1200 °C. The SEM images indicate that flake-like hexagonal crystals distribute uniformly in the materials. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the W-type barium hexaferrites. The microwave absorption property of the La3+ doping W-type hexaferrite sample is enhanced with the bandwidth below −10 dB around 8 GHz and the peak value of reflection loss about −39.6 dB at the layer thickness of 2 mm.  相似文献   

14.
Co2Z hexaferrite is a planar anisotropic iron oxide which can present high values of permeability at high frequency. In this paper, Cu-modified Co2Z hexaferrites powders were synthesized at a low temperature using a citrate precursor method. The formation of Z-type phases was characterized by X-ray diffraction and magnetization measurements. It is found that phase formation temperature and sintering temperature were influenced directly by the content of copper. The effects of Cu-substitution on the microstructure and high frequency properties of the ceramics have been investigated.  相似文献   

15.
The effects of CuO and V2O5 additions and the particle sizes of precursor materials on the microstructure and relative initial permeability of low firing temperature NiCuZn ferrites were investigated. It was found that additions of CuO and V2O5 contribute to the grain growth and densification of matrix in the sintering process, which were favorable for increase in relative initial permeability. The relative initial permeability was also strongly affected by the average particle size of precursor materials. Through using precursor materials of 0.8 μm average particle size and adding 10 mol% CuO and 0.20 mol% V2O5, for the low firing temperature NiCuZn ferrite, very high relative initial permeability of 1417 can be achieved at the frequency of 1 MHz.  相似文献   

16.
Structural, AC and DC magnetic properties of polycrystalline Zn1−xCoxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures (1100-1300 °C), and various dwell times (0.2-15 h) have been investigated thoroughly. The bulk density of the Zn0.60Co0.40Fe2O4 samples increases as the sintering temperature (Ts) increases from 1100 to 1250 °C, and above 1250 °C the bulk density decreases slightly. The Zn0.80Co0.20Fe2O4 samples show similar behavior of changes to that of Zn0.60Co0.40Fe2O4 samples except that the bulk density is found to be highest at 1200 °C. The DC magnetization as a function of temperature curves show that the Zn0.60Co0.40Fe2O4 sample is ferrimagnetic at room temperature while the Zn0.80Co0.20Fe2O4 sample is paramagnetic at room temperature. The Tc of Zn0.80Co0.20Fe2O4 sample is found to be 170 K from DC magnetization measurement. Separate measurement (AC magnetization), initial permeability as a function of temperature shows that the Tc of the Zn0.60Co0.40Fe2O4 sample is 353 K. Slight variation of Tc is observed depending on sintering condition. The initial permeability for the Zn0.60Co0.40Fe2O4 composition sintered at 1250 °C is found to be maximum.  相似文献   

17.
In this paper, the effects of Sn-substitution on temperature dependence and magnetic disaccommodation of manganese-zinc ferrites were investigated. Toroidal cores were prepared by the conventional ceramic process and sintered at 1360 °C for 4 h in atmosphere controlled by using the equation for equilibrium oxygen partial pressure. The experimental results show that the substitution of Sn4+ in manganese-zinc ferrites can influence the thermal stability and disaccommodation remarkably. Secondly, the temperature dependence of the initial permeability μi and disaccommodation of Sn-substitution manganese-zinc ferrites have an internal relationship. The experimental results are explained and compared with those of Ti-substitution manganese-zinc ferrite.  相似文献   

18.
Li0.5−x/2CuxFe2.5−x/2O4 (where x=0.0-1.0) ferrites have been prepared by solid-state reaction. X-ray diffraction was used to study the structure of the above investigated ferrites at various sintering temperatures. Samples were sintered at 1000, 1100 and 1200 °C for 3 h in the atmosphere. For the sintering temperature of 1000 °C, Li0.5−x/2CuxFe2.5−x/2O4 undergoes cubic to tetragonal transformation for higher Cu content. However, for the sintering temperature of 1100 and 1200 °C, X-ray diffraction patterns are mainly characterized by fcc structure, though presence of tetragonal distortion was found by other temperature dependence of initial permeability curves. The lattice parameter, X-ray density and bulk density were calculated for different compositions. Curie temperature was measured from the temperature dependence of initial permeability curves. Curie temperatures of Li-Cu mixed ferrites were found to decrease with the increase in Cu2+ content due to the reduction of A-B interaction. As mentioned earlier, temperature dependence of initial permeability curves was characterized by tetragonal deformation for the samples containing higher at% of Cu. The complex initial permeability has been studied for different samples. The B-H loops were measured at constant frequency, f=1200 Hz, at room temperature (298 K). Coercivity and hysteresis loss were estimated for different Cu contents.  相似文献   

19.
The combined influence of a two-step sintering (TSS) process and addition of V2O5 on the microstructure and magnetic properties of NiZn ferrite was investigated. As comparison, samples prepared by the conventional single-step sintering (SSS) procedure were also studied. It was found that with 0.3 wt% V2O5 additive, the sample sintered by the two-step sintering process at a high temperature of 1250 °C for 30 min and a lower temperature of 1180 °C for 3 h exhibited more homogeneous microstructure and higher permeability with a high Q-factor. The results showed that the TSS method with suitable additive brought positive improvement of the microstructure and magnetic properties of NiZn ferrite.  相似文献   

20.
A new kind of a-Fe/ferrite composites with sandwich structure was realized by chemical reduction method, where the as-prepared W-type barium hexaferrite flake particles were subjected to a reduction treatment in hydrogen atmosphere at different temperatures. X-ray diffractometer reveals that a-Fe/Co particles precipitate in the ferrite matrix, when the reduction temperature is higher than 230 °C. With the temperature increased, the particles morphology changed into sandwich structure in hexagonal flake particles and the barium hexaferrite phase was decomposed gradually, when were completely decomposed at T=450 °C. Results show that the composites particles with sandwich structure (T=270 °C) have higher microwave complex permeability than the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号