首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni80Fe20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni80Fe20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni80Fe20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.  相似文献   

2.
General surface boundary conditions with regard to the surface anisotropy energy Es(iitv, ø) and changes of the static magnetization tM0 in the presurface region layer have been formulated. On the example of uniaxial surface anosotropy the influence of these factors on the angular dependence of the SWR spectrum is briefly discussed.  相似文献   

3.
We have studied the field dependence of the sublattice magnetization of ferrimagnetic yttrium iron garnet (YIG) using neutron scattering. In contrast to the macroscopic spontaneous magnetization that shows the normal field dependence of a soft ferromagnet (sudden saturation at the demagnetization field and no hysteresis) in neutron scattering a field induced first order spin flop transition with considerable hysteresis is observed at a critical field of Hc∼580 G (external field). Considering that with neutron scattering the antiferromagnetic component of ∼4/5 of the total moment is detected preferentially while in the macroscopic magnetization samples the ferromagnetic component of ∼1/5 exclusively it becomes clear that ferromagnetic and antiferromagnetic component have a completely independent field (and temperature) dependence. This indicates that the two magnetic structures have to be viewed as two weakly coupled order parameters. In the zero field ground state the moment orientations of the two ordering structures are orthogonal. Only for fields H0>Hc a nearly collinear ferrimagnetic order is established by the field.  相似文献   

4.
It is shown for ferromagnetic US that an extremely large anisotropy restrains magnetic moments to 〈111〉 easy axes, resulting in a near cos θ angular dependence of the magnetization away from the 〈111〉 axes. This is further confirmed by torque measurements, which in addition show large hysteresis effects upon rotation through the hard axes. It is illustrated through torque and magnetization measurements that a near stable domain configuration can be established by field rotation through decreasing angular amplitude around a hard 〈001〉 direction. The anisotropy constant K1(T) is estimated by computing the small angle through which the magnetization deviates from the 〈111〉 axes when a field is applied along the [001] direction.  相似文献   

5.
A new spin-density-wave (SDW) system with magnetic impurities (TMTSF)2(AsF6)1−x(FeCl4)x was prepared and its magnetic properties were studied by means of magnetization and electron-spin-resonance measurements. The anisotropic g-value and comparison of the Fe concentration with the Curie constant indicate that the Fe3+ ions are in a low-spin state. We also found that the magnetization curve of the impurity spins in this compound shows an anomalous behavior. This behavior can be explained if one assumes a field-dependent magnetic interaction between the Fe3+ spins and the SDW moment. We suppose that the field dependence of the SDW pinning potential is responsible for this phenomenon.  相似文献   

6.
The magnetic properties of TlFe3Te3 are studied on powdered samples and single crystals. Below 220 K TlFe3Te3, is a very anisotropic ferromagnet, the crystallographic c axis being the easy axis of magnetization. While in the easy direction saturation is achieved below 0.5 kOe, in the hard direction saturation is reached at 64 kOe. The angular dependence of the magnetization follows closely a cos ¦?¦ law. The magnetic transition is very abrupt at low external fields, suggesting a first order phase transition. It is accompanied by a small anomaly in the thermal dilatation of the c axis. The magnetization shows an anomalous increase below 50 K suggesting a phase transition.  相似文献   

7.
The magnetization process of the spin-1 Heisenberg dimer model with the uniaxial or biaxial single-ion anisotropy is particularly investigated in connection with recent experimental high-field measurements performed on the single-crystal sample of the homodinuclear nickel(II) compound [Ni2(Medpt)2(μ-ox)(H2O)2](ClO4)2·2H2O (Medpt=methyl-bis(3-aminopropyl)amine). The results obtained from the exact numerical diagonalization indicate a striking magnetization process with a marked spatial dependence on the applied magnetic field for arbitrary but finite single-ion anisotropy. It is demonstrated that the field range, which corresponds to an intermediate magnetization plateau emerging at a half of the saturation magnetization, basically depends on a single-ion anisotropy strength as well as a spatial orientation of the applied field. The breakdown of the intermediate magnetization plateau is discussed at length in relation to the single-ion anisotropy strength.  相似文献   

8.
We present a mean-field study on the thermo-magnetic properties of GdxCo1−x amorphous alloys in the 0.16⩽x⩽0.25 composition range. A single set of exchange integrals and fixed values of the angular momenta of Gd and Co fairly describe the temperature dependence of magnetization. The magnetic specific heat and magnetic entropy show field and composition dependence. Both the specific heat anomaly and the saturated entropy, at the temperature of the magnetic phase transition, increase with increasing Co concentration. The two magnetic subnetworks and their cross-interactions contribute differently to the specific heat.  相似文献   

9.
Bilayers, TbFeCo/GdFeCoSi, made by sputtering on glass substrate with buffer and capping layers were studied by measuring the hysteresis loop and by ferromagnetic resonance (FMR). When the field H was applied along the film normal, a double HC hysteresis loop related to the two sublayers was observed. In ferromagnetic resonance measurements, a peculiar out-of-plane angular dependence of FMR spectrum was obtained. When scanning field H was 0-637 kA/m less than the anisotropy field of TbFeCo sublayer, two FMR peaks were observed. One peak was characteristic of uniaxial and unidirectional anisotropy. The anisotropy constants were obtained by fitting the data with the theory of FMR, and this peak was considered to be related to the low anisotropy GdFeCoSi layer. The second peak appeared only when the dc field H was orientated in a limited angular range around 180°. This peak was considered to be related to an uncoupled interfacial GdFeCoSi sublayer near Al capping layer. However, when H was scanned between 0-1114 kA/m, only one peak is observed due to magnetization reversal of TbFeCo layer with uniaxial anisotropy.  相似文献   

10.
Hyperfine interactions and bulk magnetic properties have been investigated in the system Zr(Fe1?xAlx)2 as a function of concentration, temperature and stoichiometry. The similarity of both the concentration and the temperature dependence of the magnetization is pointed out. The influence of clusters, short range order and magnetocrystalline anisotropy on the magnetization process will be discussed. From the temperature dependence of the hyperfine field and the magnetization spin wave contributions are calculated. The applicability of the model of itinerant electron magnetism will be compared with the formation of local moments.  相似文献   

11.
We have measured magnetization curves and powder neutron diffraction of double-layered Ruddlesden-Popper type ruthenate Sr3−xCaxRu2O7 (x=1.5, 2.0 and 3.0). The field dependence of the magnetization revealed that the transition field of metamagnetic transition along the b-axis shifted to lower fields and that the transition became broad with increasing Sr content. The slope of the magnetization curve also increased with increasing Sr content below the metamagnetic transition. These results indicate that an itinerant component is partly introduced by the Sr substitution. From the magnetic reflection, on cooling below TN, an additional reflection was observed at (0 0 1) for each x, and the amplitude increased with decreasing temperature. The observed diffraction patterns are very similar to those of Ca3Ru2O7. We conclude that the magnetic structure of the antiferromagnetic ordered phase is basically the same structure with that of Ca3Ru2O7.  相似文献   

12.
The concept of a macroscopically large London-penetration depth due to weak interstack interaction in the c1-direction is well suited to explain the different low field magnetization behavior for magnetic fields along the b1 and c1 directions. In a Ginzburg Landau model with anisotropic effective masses the angular dependence of the lower critical field Hc1 can be accounted for.  相似文献   

13.
The magnetic, electrical and electronic properties of the tetragonal ternary YbFe4Al8 compound have been investigated. This compound was supposed to be an antiferromagnetic superconductor due to the negative magnetization signal appearing at a low field of the field cooling mode, however, based on the measurements of the temperature dependence of magnetization and resistivity we do not confirm the presence of superconductivity in this material and we ascribe the negative magnetization to the complicated non-collinear magnetic structure. A switch to the antiferromagnetic order at about 150 K has been visible both on the M(T) and ρ(T) curves. The valence state of the Yb ions has been studied by X-ray photoemission spectroscopy. The valence band spectrum at the Fermi level exhibits the domination of the hybridized Yb(4f) and Fe(3d) states.  相似文献   

14.
The variation of the applied field results in a subsequent change of magnetization with time. There is a relationship between the coercivity (Hc), as the equilibrium characteristic of the system, and its magnetic stability (1/S), as a parameter characterizing the time dependence. 1/S as a function of Hc has been measured and studied for different Fe1−xCox samples. We synthesized several samples with different values of x by applying various magnetic fields during the grains’ growth, and observed a linear relationship between 1/S and Hc.  相似文献   

15.
Three systems of permanent magnets, which produce strong magnetic stray fields (SFs) with H>Br=4πMr were studied in this work. Remarkable feature of the developed systems is localization of the strong fields in large region with linear dimension Δr comparable to characteristic magnet dimension a. The first system composed of uniformly magnetized magnets generates sufficiently homogeneous strong SFs, which amounts up to 1.5 of magnets induction Br. The second system with nonuniform magnetization is represented by cylindrical and hemispheric magnets their magnetization vector directed at every point along the radius. Such distribution of magnetization is assumed to be the consequence of magnet radial crystal texture resulting in a high uniaxial anisotropy field HK. It is shown that maximal SFs can exist on the flat surface of cylindrical magnet at the distance r from its axis and their limiting value equals to 4πMr ln(2a/r). Here, the localization region of the fields is comparable to diameter of cylindrical magnet Δr≈2R. As for the hemisphere its SFs are less than corresponding SFs for the cylinder. The third so-called quasi-nonuniform system consists of uniformly magnetized cylindrical sectors their magnetization vector is directed along the sector bisectrix. The strong SFs and their localization region are calculated in details for this case. The passage to radial magnetized cylinder is considered.  相似文献   

16.
We present a systematic investigation on the structural and magnetic properties of Zn1−xCoxO nanoparticles synthesized by an auto-combustion method. The single-phase Zn1−xCoxO crystallize in the wurtzite-type structure with a homogeneity range as large as x≈0.30, which enables the observation of some anomalies. The lattice parameter a and the unit cell volume V increase with the Co content, and anomalies are discernable around x=0.15 on the ax and Vx curves. The magnetization data show no evidence of ferromagnetic (FM) ordering in our samples down to T=5 K, and the magnetization at 5 K and 5 T exhibits a maximum around x=0.125. Based on the detailed analysis of the magnetization data and the donor impurity band exchange model, the anomalies on composition dependence of both the lattice parameters and magnetization can be associated with an occurrence of cation percolation around the threshold xp (≈1.5/Z=0.125 for three-dimensional lattice with coordination number Z=12). Within the framework of the donor impurity band exchange model, the absence of FM in the well-characterized Zn1−xCoxO can be attributed to insufficient donor electron concentration.  相似文献   

17.
18.
Thin films of Ge100−xFex (x in at%) alloys, fabricated by thermal co-evaporation, have an amorphous structure at compositions x<∼40, although an unidentified crystalline phase with an FCC symmetry also exists at low Fe content. Magnetization versus temperature curves show that saturation magnetization is non-zero (1 to 2.5 emu/cm3) and remains nearly unchanged up to the highest measured temperature of 350 K. Magnetic hysteresis loops at room temperature show a typical ferromagnetic shape, complete saturation occurring by 1–2 kOe. These results may indicate ferromagnetic ordering at room temperature. No definite tendency is observed in the compositional dependence of saturation magnetization.  相似文献   

19.
We report detailed studies of the non-equilibrium magnetic behavior of antiferromagnetic Co3O4 nanoparticles. The temperature and field dependence of magnetization, wait time dependence of magnetic relaxation (aging), memory effects, and temperature dependence of specific heat have been investigated to understand the magnetic behavior of these particles. We find that the system shows some features that are characteristic of nanoparticle magnetism such as bifurcation of field-cooled (FC) and zero-field-cooled (ZFC) susceptibilities and a slow relaxation of magnetization. However, strangely, the temperature at which the ZFC magnetization peaks coincides with the bifurcation temperature and does not shift on application of magnetic fields up to 1 kOe, unlike most other nanoparticle systems. Aging effects in these particles are negligible in both FC and ZFC protocols, and memory effects are present only in the FC protocol. We show that Co3O4 nanoparticles constitute a unique antiferromagnetic system which enters into a blocked state above the average Néel temperature.  相似文献   

20.
Light-induced changes of the hysteresis loops of magnetization and microwave absorption are investigated in low-doped La1−xCaxMnO3 (x<0.2) thin films. The width of the hysteresis loops decreases clearly under illumination with visible or near-infrared light at temperatures below 50 K. The microwave conductivity has a minimum value at magnetic fields corresponding to the magnetization reversal and is shifted towards weaker fields under illumination. These effects show complex nonexponential time evolution and dependence on strength of the magnetic field. The results can be explained by assuming that small ferromagnetic metallic regions exist within the insulating ferromagnetic phase of the sample, and that these regions are expanded by optically induced charge transfer between Jahn–Teller split eg states of neighboring Mn3+ ions. Decrease of the Mn3+ XPS core level spectrum is observed in the samples under illumination with a HeNe laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号