首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Magnetostriction of amorphous Fe79Mo8Cu1B12, (Fe12Co1)79Mo8Cu1B12 and (Fe9Co1)79Mo8Cu1B12 prepared by planar flow casting was measured using a direct method. The results indicate that magnetostriction in parallel (λ)(λ) and perpendicular (λ)(λ) directions of applied magnetic field is linearly dependent on magnetic field. In order to determine the influences of chemical composition and the conditions of sample preparation the magnetostriction of pure BCC-Fe, Cu and Mo were also measured. Samples containing Co with Curie temperatures slightly above room temperatures were shown to exhibit a hybrid magnetostriction behaviour with both ferromagnetic and paramagnetic features.  相似文献   

2.
We have investigated the electronic structure and the magnetic properties of Co–Si alloy clusters using ab initio spin-polarized density functional calculations. The possible CoSi2, CoSi, and Co2Si phase clusters with oblique hexagon prism, icosahedron, and cuboctahedron structures are introduced. The CoSi phase cluster with icosahedron structure has the largest binding energy and amount of charge transfer. We found that HOMO-LUMO gap, magnetic moment, and spin polarization for the Co–Si alloy clusters with icosahedron structure increase with Co concentration. The Si atoms in the CoSi phase with icosahedron structure have negative magnetic moment.  相似文献   

3.
Co/(Gd–Co) multilayers have been prepared by rf-sputtering and investigated by means of Transverse Magnetooptic Kerr Effect (TMOKE), SQUID and VSM magnetometry. The composition of amorphous Gd0.36Co0.64Gd0.36Co0.64 layers was chosen so that their saturation magnetization was dominated by Gd moments in all the temperature range. Co and Gd–Co layers formed a macroscopic ferrimagnetically coupled system displaying a compensation temperature. Complete magnetic moment compensation was found at such point. An inversion of TMOKE hysteresis loops and a divergent behaviour of coercivity were also observed. By changing the layers thickness it has been possible to control the magnetic characteristics of the Co/(Gd–Co) structures, in particular the compensation takes place at different temperatures.  相似文献   

4.
Magnetization reversal processes and domain structures have been studied in Mo(1 1 0)/Co(0 0 0 1)/Au(1 1 1) structures grown by molecular beam epitaxy on monocrystalline (11–20) sapphire substrates. Wedge-shaped samples with different Co thickness gradients relative to the Mo [0 0 1] direction were fabricated. Observation of the domain structure was performed at room temperature using Kerr microscopy in a Co thickness range varying from 5 to 50 nm, where the magnetization is oriented in the plane of the sample. A Co thickness-dependent coercivity field was determined through analysis of the domain wall position during the reversal process. A preferential orientation of magnetic domain walls was found, with the domains being needle-like. The orientation, as well as the size of the needles, depends on the Co thickness and the orientation of the magnetic field applied in the sample plane.  相似文献   

5.
Ferromagnetic, semi-insulating Mn-alloyed ZnO films with a Curie temperature above 375 K have been grown by pulsed laser deposition on c-plane sapphire substrates. Antiferromagnetic coupling is revealed by temperature-dependent magnetization measurements. The antiferromagnetic coupling would be compatible with the observed weak ferromagnetism by assuming that the magnetic moments order antiferromagnetically but nonparallel (canted). We find a clear correlation between coercivity and mosaicity of the ferromagnetic Mn-alloyed ZnO films and explain it on the basis of a coercivity mechanism known from soft magnetic materials.  相似文献   

6.
7.
The topic “magnetic impurities in metals” is certainly one of the most studied problems of the solid-state physics in the last years. The interest toward this argument relies on the fact that the interaction between the magnetic moment of the impurities and the conduction electrons of the host metal, is responsible for a large variety of physical phenomena.  相似文献   

8.
By Monte Carlo simulations in the canonical ensemble, we have studied the magnetic anisotropy in Fe/Dy amorphous multilayers. This work has been motivated by experimental results which show a clear correlation between the magnetic perpendicular anisotropy and the substrate temperature during elaboration of the samples. Our aim is to relate macroscopic magnetic properties of the multilayers to their structure, more precisely their concentration profile. Our model is based on concentration dependent exchange interactions and spin values, on random magnetic anisotropy and on the existence of locally ordered clusters that leads to a perpendicular magnetisation. Our results evidence that a compensation point occurs in the case of an abrupt concentration profile. Moreover, an increase of the non-collinearity of the atomic moments has been evidenced when the Dy anisotropy constant value grows. We have also shown the existence of inhomogeneous magnetisation profiles along the samples which are related to the concentration profiles.  相似文献   

9.
10.
Soft-mode theory based on Diffour model for ferroelectric subsystem, and mean-field theory as well as Heisenberg model for antiferromagnetic subsystem are utilized to investigate the magnetoelectric coupling effect in a hexagonal ferroelectromagnet, in which the ferroelectric and antiferromagnetic orders spontaneously coexist below a certain temperature. An anomaly of polarization at the magnetic transition temperature is ascribed to the effect of magnetoelectric coupling. The magnetic excitation has also been studied by spin-wave theory over the three-sublattice model. It is demonstrated that role of magnetoelectric coupling effect is not only related with the strength of magnetoelectric coupling but also special spin lattice structure. Our results show the magnetic specific heat induced by magnetic excitation experiences a suppression by the magnetoelectric coupling.  相似文献   

11.
Understanding and controlling the anisotropy energy and its effects has proved vital to the development of soft magnetic materials and their applications. Indeed, acting on composition and structure and working out specific annealing treatments, a large variety of anisotropy-governed behaviors under DC and AC excitation can be obtained. These are discussed in the present paper, together with special problems arising in the characterization of anisotropic soft magnets and a few significant applications. It is stressed how features like JJ–HH loop shape, energy losses, and magnetoresistance effects can be controlled, in crystalline and amorphous materials, by the methods of induced anisotropy. The high-frequency behavior of these materials can be strongly affected by the anisotropy field via resonant absorption of energy. This calls for tradeoff between the values of permeability and resonance frequency.  相似文献   

12.
Cosmologists today are confronted with the perplexing reality that the universe is currently accelerating in its expansion. Nevertheless, the nature of the fuel that drives today's cosmic acceleration is an open and tantalizing mystery. There exists the intriguing possibility that the acceleration is not the manifestation of yet another mysterious ingredient in the cosmic gas tank (dark energy), but rather our first real lack of understanding of gravity itself, and even possibly a signal that there might exist dimensions beyond that which we can currently observe. The braneworld model of Dvali, Gabadadze and Porrati (DGP) is a theory where gravity is altered at immense distances by the excruciatingly slow leakage of gravity off our three-dimensional Universe and, as a modified-gravity theory, has pioneered this line of investigation. I review the underlying structure of DGP gravity and those phenomenological developments relevant to cosmologists interested in a pedagogical treatment of this intriguing model.  相似文献   

13.
An experimental and numerical study of the magnetization in (Fe 3 nm/Dy 2 nm) multilayers is presented. The samples were thermally evaporated under ultra-high vacuum at two different substrate temperatures, 320 and 570 K. In order to get the magnetization depth profile of these transition metal/rare earth (TM/RE) multilayers, a fine investigation of the structural, chemical, and magnetic properties was carried out. The samples were studied by X-ray reflectivity (XRR), high resolution transmission electron microscopy (HRTEM), conversion electron Mössbauer spectrometry (CEMS), SQUID magnetometry and polarized neutron reflectivity (PNR). Magnetization profiles were obtained by Monte Carlo simulations to support the PNR fits. The key role of the crystalline structure is emphasized by magnetic depth profile measurements performed using polarized neutron reflectometry. The antiparallel configuration of Fe and Dy layers’ magnetizations was evidenced, as well as the perpendicular magnetic anisotropy (PMA), especially in the case of the sample prepared at 570 K.  相似文献   

14.
The tendency of the entropy to a maximum as an isolated system is relaxed to the equilibrium (the second law of thermodynamics) has been known since the mid-19th century. However, independent theoretical and applied studies, which suggested the maximization of the entropy production during nonequilibrium processes (the so-called maximum entropy production principle, MEPP), appeared in the 20th century. Publications on this topic were fragmented and different research teams, which were concerned with this principle, were unaware of studies performed by other scientists. As a result, the recognition and the use of MEPP by a wider circle of researchers were considerably delayed. The objectives of the present review consist in summation and analysis of studies dealing with MEPP. The first part of the review is concerned with the thermodynamic and statistical basis of the principle (including the relationship of MEPP with the second law of thermodynamics and Prigogine's principle). Various existing applications of the principle to analysis of nonequilibrium systems will be discussed in the second part.  相似文献   

15.
The magnetic properties of Co nanostructures and a Co monolayer on W(0 0 1) have been studied in the framework of density functional theory. Different geometries such as planar and three-dimensional clusters have been considered, with cluster sizes varying between 2 and 13 atoms. The calculations were performed using the real-space linear muffin-tin orbital method (RS-LMTO-ASA). With respect to the stability of the magnetic state, we predict an antiferromagnetic (AFM) structure for the ground state of the planar Co clusters and a ferromagnetic (FM) state for the three-dimensional clusters. For the three-dimensional clusters, one of the AFM arrangements leads to frustration due to the competing FM and AFM exchange interactions between different atoms in the cluster, and gives rise to a non-collinear state with energy close to that of the FM ground state. The relative role of the Co–Co and Co–W exchange interactions is also investigated.  相似文献   

16.
The magnetic behavior of soft magnetic materials is discussed with some emphasis on the connection between macroscopic properties and underlying micromagnetic energy aspects. It is shown that important conceptual gaps still exist in the interpretation of macroscopic magnetic properties in terms of the micromagnetic formulation. Different aspects of hysteresis modeling, power loss prediction and magnetic non-destructive evaluation are discussed in this perspective.  相似文献   

17.
The cage compound Ce3Pd20Si6 has recently been shown to undergo two successive low-temperature phase transitions which are strongly affected by an applied magnetic field. Here we show that, as the lower, probably antiferromagnetic transition is suppressed to zero in a field slightly above 1 T, the electrical resistivity shows a non-Fermi-liquid-like linear-in-T   temperature dependence while it follows the usual Fermi liquid T2T2 temperature dependence both at smaller and larger fields. This suggests that a field-induced quantum critical point exists in Ce3Pd20Si6.  相似文献   

18.
Compared with the top-down lithographic techniques, bottom-up chemical synthesis and self-assembly approaches offer much more flexibilities in creating magnetic nanostructures with controlled size, shape, composition and physical properties. This review summarizes some of the latest developments in this field, with emphasis mainly on transition metals, their alloys and metal oxide nanoparticles. The focus is directed towards the conditions of individual particles as well as large assemblies of particles through colloidal chemistry. Furthermore, some of the future directions in nanomagnetism from the perspective of physical chemists is also presented.  相似文献   

19.
The antiferromagnetic Blume–Emery–Griffiths model in an external magnetic field is studied by using the exact recursion relations on the Bethe lattice for arbitrary values of biquadratic and for negative values of bilinear interactions. We have studied the thermal variations of two-sublattice magnetizations belonging to spin-1 BEG model to obtain the phase diagrams on the (H/|J|,kT/|J|)(H/|J|,kT/|J|) plane. As a result, we have found that the system presents second- and first-order phase transitions, therefore, tricritical points for appropriate values of K/|J|K/|J|, D/|J|D/|J| and q  . We have also found that the second-order phase transition lines exhibit reentrant phenomena in temperature, besides it also shows reentrant phenomena for the first-order phase lines in external magnetic field for q=4q=4 and 6.  相似文献   

20.
An overview of wavefunction-based correlation methods generalised for the application to solids is presented. Those methods based on a preceding Hartree–Fock treatment explicitly calculate the many-body wavefunction in contrast to the density-functional theory which relies on the ground-state density of the system. This review focus on the so-called method of increments where the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments is applied to a great variety of materials, from covalent semiconductors to ionic insulators, from large band-gap materials like diamond to the half-metal αα-tin, from large molecules like fullerenes over polymers, graphite to three-dimensional solids. Rare-gas crystals where the binding is van der Waals like are treated as well as solid mercury, where the metallic binding is entirely due to correlation. Strongly correlated systems are examined and the correlation driven metal–insulator transition is described at an ab initio level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号