首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the electronic structure of Cd(TM)O2 (TM=Cr, Mn, Fe, Co, Ni) in the chalcopyrite structures. From this study we find that Cd(TM)O2 is a half-metallic ferromagnetic compound. From the energy consideration we find that Cd(TM)O2 is more stable in chalcopyrite structure rather than in rock salt structure. A careful analysis of the spin density reveals the ferromagnetic coupling between the p-d states and the cation dangling-bond p states, which is believed to be responsible for the stabilization of the ferromagnetic phase. The calculated heat of formation, bulk modulus and cohesive energy are reported.  相似文献   

2.
We have investigated electronic and magnetic properties of hexagonal, tetragonal, and orthorhombic GdSi2, using the full-potential linearized augmented plane-wave method based on general gradient approximation for exchange-correlation potential. Antiferromagnetic (AFM) states of the GdSi2 are found from total energy calculations to be energetically more stable, compared to ferromagnetic (FM) states in all of the considered present crystal structures. It is in good agreement with an experimental result. The calculated magnetic moments of valence electrons of the Gd atoms are 0.16, 0.14, and 0.14 μB for hexagonal, tetragonal, and orthorhombic crystal structures in AFM states, respectively, and the Si atoms are coupled antiferromagnetically to the Gd atoms irrespective of crystal structure even though their magnitudes are negligible.  相似文献   

3.
The electronic structure, the metallic and magnetic properties of metal phosphonate Co[(CH3PO3)(H2O)] have been studied by first-principles calculations, which were based on the density-functional theory (DFT) and the full potential linearized augmented plane wave (FPLAPW) method. The total energy, the spin magnetic moments and the density of the states (DOS) were all calculated. The calculations reveal that the compound Co[(CH3PO3)(H2O)] has a stable metallic antiferromagnetic (AFM) ground state and a half-metallic ferromagnetic (FM) metastable state. Based on the spin distribution obtained from calculations, it is found that the spin magnetic moment of the compound is mainly from the Co2+, with some small contributions from the oxygen, carbon and phosphorus atoms, and the spin magnetic moment per molecule is 5.000μB, which is in good agreement with the experimental results.  相似文献   

4.
The first principle within the full potential linearized augmented-plane-wave (FP-LAPW) method was applied to study the compound of Co[N(CN)2]2(L) [L=pyrazine dioxide (pzdo) and 2-methyl pyrazine dioxide (mpdo)] with dual μ- and μ3-[N(CN)2] bridges. The density of states, the electronic band structure and the spin magnetic moment are calculated. The calculations reveal that these two compounds have a ferromagnetic (FM) interaction arising from the 1,5-μ- and μ3-[N(CN)2] bridges. The spin magnetic moment mainly comes from the Co ion with little contribution from N, O and C anions.  相似文献   

5.
We have performed relativistic first-principles full-potential linearized augmented plane wave (FLAPW) calculation for rare earth palladium sulfide EuPd3S4 in the ferromagnetic and antiferromagnetic states. The density of 4f electrons of Eu is taken from a local-spin-density approximation self-interaction correction (LSDA-SIC) atomic calculation. EuPd3S4 is found to exhibit antiferromagnetic ordering in its ground state. The charge, orbital, magnetic moment and spin ordering are explained with the electronic structure, the orbital-projected density of states and the total energy study. EuPd3S4 is found to be stable in the body-centered Type-I antiferromagnetic state, in agreement with experimental results. Different Eu states are found in antiferromagnetic ordering. The magnetic moments of different states obtained through spin-polarized calculation are also in good agreement with experimental results. The phenomena observed are explained by the orbital hybridization of Eu and Pd ions as compared with the free ions.  相似文献   

6.
The ab initio method of the full potential linearized augmented-plane-wave has been used to study the electronic band structure and the ferromagnetic (FM) properties of the organic radical MOTMP. The total and the partial density of states and the atomic spin magnetic moments are calculated. The calculation revealed that MOTMP has a stable ferromagnetic ground state and the spin magnetic moment is 1.0 μB per molecule, which is in good agreement with the experimental value. It is found that the unpaired electrons in this compound are localized in a molecular orbital constituted primarily of π*(NO) orbital and the main contribution of the spin magnetic moment comes from the NO free radical. It is also found that there exists ferromagnetic intermolecular interaction in the compound.  相似文献   

7.
First-principles calculations have been performed on the face-centered cubic (FCC) magnesium-transition metal (TM) hydrides Mg7TMH16 (TM=Sc, Ti, V, Y, Zr, Nb). The cohesive energies are calculated to analyze the stability, and the obtained enthalpies of formation for hydrides Mg7TMH16 have been used to investigate the possible pathways of formation reaction. The calculated enthalpy changes show that the decomposition temperatures of Mg7TMH16 are lower than that of MgH2. The electronic densities of states reveal that all the hydrides studied here exhibit metallic characteristics. The bonding nature of Mg7TMH16 is investigated, showing stronger covalent bonding between TM and H than between Mg and H.  相似文献   

8.
In this work, we aimed to examine the spin-polarized electronic band structures, the local densities of states as well as the magnetism of ZnMnTe- and CdMnTe-diluted magnetic semiconductors (DMSs) in the ferromagnetic phase, and with 25% of Mn. The calculations are performed by the recent ab initio full potential augmented plane waves plus local orbitals (FP−L/APW+lo) method within the spin-polarized density-functional theory and the local spin density approximation. We have determined the exchange splittings produced by the Mn d states: Δx(d) and Δx(pd), and we found that the effective potential for the minority spin is more attractive than that for the majority spin. Also, we show the nature of the bonding from the charge spin-densities calculations, and we calculate the exchange constants N0α and N0β, which mimics a typical magneto-optical experiment. The calculated total magnetic moment is found to be equal to 5μB for both DMSs. This value indicates that every Mn impurity adds no hole carriers to the perfect ZnTe and CdTe crystals. Furthermore, we found that p–d hybridization reduces the local magnetic moment of Mn and produces small local magnetic moments on the nonmagnetic Te, Zn and Cd sites.  相似文献   

9.
We have calculated the equilibrium volume and the density of states (DOS) of Cr2AlC for antiferromagnetic (AFM), ferromagnetic (FM) and paramagnetic (PM) configurations by ab initio total energy calculations. Based on a comparison of the cohesive energies as well as the DOS for all three magnetic configurations we have identified the FM configuration to be metastable. Furthermore, we report the structural characterization of polycrystalline Cr2AlC thin films grown by magnetron sputtering. Our calculated interplanar distances and equilibrium volume for the PM and AFM configurations are in good agreement with our experiment. The charge density distribution suggests that the chemical bonding between Cr and C in Cr2AlC is very similar to the one in cubic CrC.  相似文献   

10.
A systematic density functional theory (DFT) study has been performed to investigate the electronic and magnetic properties of one-dimensional sandwich polymers constructed with benzene (Bz) and the second-row transition metal (TM = Y, Zr, Nb, Mo, and Tc). Within the framework of generalized gradient approximation (GGA), [Tc(Bz)] is a ferromagnetic half-metal, and [Nb(Bz)] is a ferromagnetic metal. With the on-site Coulomb interaction for 4d TM atoms being taken into account, [Tc(Bz)] keeps a robust half-metallic behavior, while [Nb(Bz)] becomes a spin-selective semiconductor. The stability of the half-metallic [Tc(Bz)] polymer is discussed based on magnetic anisotropy energy (MAE). Compared with 0.1 meV per metal atom in [Mn(Bz)], the calculated MAE for [Tc(Bz)] is 2.3 meV per metal atom. Such a significantly larger MAE suggests that Tc(Bz)] is practically more promising than its first-row TM equivalent.  相似文献   

11.
First principles calculations based on the density functional theory within the local spin density approximation plus U(LSDA + U) scheme, show rhombohedral Bi2FeTiO6 is a potential multiferroic in which the magnetism and ferroelectricity coexist. A ferromagnetic configuration with magnetic moment of 4μB per formula unit has been reported with respect to the minimum total energy. Spontaneous polarization of 27.3 μC/cm2, caused mainly by the ferroelectric distortions of Ti, was evaluated using the berry phase approach in the modern theory of polarization. The Bi-6s stereochemical activity of long-pair and the ‘d0-ness’ criterion in off-centring of Ti were coexisting in the predicted new system. In view of the oxidation state of Bi3+, Fe2+, Ti4+, and O2− from the orbital-resolved density of states of the Bi-6p, Fe-3d, Ti-3d, and O-2p states, the valence state of Bi2FeTiO6 in the rhombohedral phase was found to be Bi3+2Fe2+Ti4+O6.  相似文献   

12.
First-principles calculations have been performed to study the electronic structure and the ferromagnetic properties of the cyano-bridged bimetallic compound Mn2(H2O)5Mo(CN)7·4H2O (α phase).The calculations were based on density-functional theory and the full potential linearized augmented plane wave method (FP-LAPW). The calculated total energies revealed that the compound has a stable ferromagnetic (FM) ground state, which is in agreement with the experiments. The electronic structure of the compound has a half-metallic behavior. The calculated magnetic moment per molecule is about 15.000 μB, the magnetic moment are mainly from Mo and Mn atoms with d electronic configuration. It is also found that there exists ferromagnetic interaction between low-spin Mo2+ and high-spin Mn3+ ions through the Mo-C-N-Mn linear linkages.  相似文献   

13.
We have studied the energetics and magnetism in Cr-doped (ZnTe)12 clusters by first principles density functional calculations. Total energy calculations suggest that it is energetically most favourable for Cr atoms to substitute at Zn sites. Both ferromagnetic and anti-ferromagnetic coupling between the Cr atoms exist depending on the Cr-Cr distance in the clusters. The magnetic exchange coupling between Cr atoms is short-ranged.  相似文献   

14.
First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO3 is a direct band gap between the occupied O 2p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2p states and Hf 5d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO3 compound, and it still awaits experimental confirmation.  相似文献   

15.
16.
Based on the generalized gradient approximation, full potential linearized augmented plane wave (FP-LAPW) calculations have been performed to study the electronic band structure and the intermolecular ferromagnetic (FM) interactions for the two TEMPO radicals 4-Benzylideneamino-2,2,6,6-tetramethylpiperidin-1-oxyl (1) and 4-(2-naphtylmethyleneamino)-2,2,6,6-tetramethylpiperidin-1-oxyl (2). The total and the partial density of states and the atomic spin magnetic moments are calculated and discussed. The calculation revealed that the two TEMPO radicals have the intermolecular FM interactions, and the spontaneous magnetic moment is 1.0 μB per molecule of each crystal, which is in good agreement with the experimental value. It is found that the unpaired electrons in these compounds are localized in a molecular orbital constituted primarily of π* (NO) orbital, and the main contribution of the spin magnetic moment comes from the NO-free radical. The origin of FM is also studied in detail.  相似文献   

17.
Ferromagnetic ordering of silver impurities in the AlN semiconductor is predicted by plane-wave ultrasoft pseudopotential and spin-polarized calculations based on density functional theory (DFT). It was found that an Ag impurity atom led to a ferromagnetic ground state in Ag0.0625Al0.9375N, with a net magnetic moment of 1.95 μB per supercell. The nitrogen neighbors at the basal plane in the AgN4 tetrahedron are found to be the main contributors to the magnetization. This magnetic behavior is different from the ones previously reported on transition metal (TM) based dilute magnetic semiconductor (DMS), where the magnetic moment of the TM atom impurity is higher than those of the anions bonded to it. The calculated electronic structure band reveals that the Ag-doped AlN is p-type ferromagnetic semiconductor with a spin-polarized impurity band in the AlN band gap. In addition, the calculated density of states reveals that the ferromagnetic ground state originates from the strong hybridization between 4d-Ag and 2p-N states. This study shows that 4d transition metals such as silver may also be considered as candidates for ferromagnetic dopants in semiconductors.  相似文献   

18.
First-principles density functional theory calculations have been carried out to investigate electronic structures of anatase TiO2 with substitutional dopants of N, Nd, and vacancy, which replace O, Ti, and O, respectively. The calculation on N-doped TiO2 with the local density approximation (LDA) demonstrates that N doping introduces some states located at the valence band maximum and thus makes the original band gap of TiO2 smaller. Examining the effect of the strong correlation of Nd 4f electrons on the electronic structure of Nd-doped TiO2, we have obtained the half-metallic ground state with the LDA and the insulating ground state with the LDA+U (Hubbard coefficient), respectively. In addition, the calculation on vacancy-doped TiO2 with the LDA shows that a vacancy can induce some states in the band-gap region, which act as shallow donors.  相似文献   

19.
A first-principles tight-binding linear muffin tin orbital (TB-LMTO) method within the local-density approximation is used to calculate the total energy, lattice parameter, bulk modulus, magnetic moment, density of states and energy band structures of half-metallic CrO2 at ambient as well as at high pressure. The magnetic and structural stabilities are determined from the total energy calculations. From the present study we predict a magnetic transition from ferromagnetic (FM) state to a non-magnetic (NM) state at 65 GPa, which is of second order in nature. We also observe from our calculations that CrO2 is more stable in tetragonal phase (rutile-type) at ambient conditions and undergoes a transition to an orthorhombic structure (CaCl2-type) at 9.6 GPa, which is in good agreement with the experimental results. We predict a second structural phase transition from CaCl2- to fluorite-type structure at 89.6 GPa with a volume collapse of 7.3%, which is yet to be confirmed experimentally. Interestingly, CrO2 shows half metallicity under ambient conditions. After the first structural phase transition from tetragonal to orthorhombic, half metallicity has been retained in CrO2 and it vanishes at a pressure of 41.6 GPa. Ferromagnetism is quenched at a pressure of 65 GPa.  相似文献   

20.
The electronic structure and the magnetic properties of transition metal phosphonate Co(PhPO3)·H2O have been studied by first-principles within the density-functional theory (DFT) and the full potential linearized augmented plane wave (FP-LAPW) method. The total energy, the total magnetic moment, the atomic spin magnetic moments and the density of states(DOS) of Co(PhPO3)·H2O were all calculated. The calculations reveal that the title compound is a metallic antiferromagnet and has a metallic ferromagnetic metastable state, which are in good agreement with the experiment. The spin magnetic moment of Co(PhPO3)·H2O is about 4.93 μBμB per molecule, and it is mainly assembled at the cobalt atom, at the same time, with a little contribution from the P, O1, O2, O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号