首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X-ray powder diffraction and magnetization measurements were done on the magnetic shape memory alloys Ni2Mn1+xIn1−x. On the basis of the results, the magnetic phase diagram was determined for Ni2Mn1+xIn1−x alloys. Magnetization measurements make clear that the excess Mn atoms, which substitute for In sites, are coupled ferromagnetically to the ferromagnetic manganese sublattices. A magnetic phase diagram of Ni2Mn1+xIn1−x alloys is discussed qualitatively on the basis of the interatomic dependence of the exchange interactions.  相似文献   

2.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

3.
The crystal structure and magnetocaloric effect of Gd5SixSn4−x   (with x=2.4x=2.4, 2.6 and 2.8) alloys were studied by means of X-ray power diffraction (XRD) and magnetic measurements. From the XRD results, these alloys adopt a Gd5Si4-type structure for x=2.8x=2.8, Gd5Si4-type and Gd5Si2Ge2-type mixed structures for x=2.4x=2.4 and 2.6, while some minor phases can also be found. The Curie temperatures of the Gd5SixSn4−x increases gradually when x increases from 276 K for x=2.4x=2.4, to 301.5 K for x=2.8x=2.8. Magnetic entropy changes of these alloys at a magnetic field change of 0–1.8 T are 1.88, 2.26 and 1.69 J/kg K for x=2.4x=2.4, 2.6 and 2.8, respectively. The temperature-dependent XRD analysis shows that there is no crystallographic transition for these alloys, which can explain their low magnetic entropy changes.  相似文献   

4.
5.
Polycrystalline samples of Laves-phase alloys Dy(Co1−xFex)2(x=0x=0, 0.02,0.04,0.06,0.08) have been prepared by arc-melting method. No first order phase transition was observed for samples with x≠0x0. With the increase of Fe content, the Curie temperature increases greatly, while the calculated magnetic entropy change, ΔSM, shows an obvious decrease with a broader peak. The origin of the magnetocaloric effect in Dy(Co1−xFex)2 alloys has been discussed.  相似文献   

6.
7.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

8.
Bi doped lanthanum manganites with the chemical composition of La0.67−xBixCa0.33MnO3 (x=0x=0, 0.05, 0.1, 0.2) were prepared by the standard solid-state process. The Curie temperatures were measured to be 267 K for x=0x=0, 248 K for x=0.05x=0.05, 244 K for x=0.1x=0.1 and 229 K for x=0.2x=0.2 samples. It was found that the maximum value of the magnetic entropy change ∣ΔSm∣ has reached the highest value of 6.08 J/kg K at 3 T for the composition with x=0.05x=0.05. Nearly the same maximum entropy change was observed for the x=0x=0 sample. A large decrease in the magnitude of the entropy change was observed for the x=0.2x=0.2 sample.  相似文献   

9.
10.
Magnetization curves of Tb1−xGdxMn6Sn6 compounds (0?x?1) have been measured for aligned powder samples in the temperature range 4.2–300 K in pulsed magnetic fields up to 30 T. Temperature and concentration dependences of the magnetocrystalline anisotropy constants K1 and K2 and concentration dependence of the temperature of spontaneous spin-reorientation transition have been determined. Using these data, we estimated the contribution of the manganese and terbium atoms to the magnetic anisotropy of Tb1−xGdxMn6Sn6 and analyzed the origin of the appearance of field-induced first-order magnetic phase transition in these compounds.  相似文献   

11.
Concentration-driven reorientation phase transitions in ultrathin magnetic films of FeCo alloy have been studied. It is established that, in addition to the easy-axis and easy-plane phases, a spatially inhomogeneous phase (domain structure), a canted phase, and also an “in-plane easy-axis” phase can exist in the system. The realization of the last phase is associated with the competition between the single-ion anisotropy and the magnetoelastic interaction. The critical values of Co concentration corresponding to the phase transitions are evaluated, the types of phase transitions are determined, and the phase diagrams are constructed.  相似文献   

12.
We report the observation of excellent hard magnetic properties on purely single phase ErCo7−xCux compounds with x=0.3, 0.5, 0.8 and 1. Cu substitution leads to a decrease in the saturation magnetization, but enhances the uniaxial anisotropy in this system. The large anisotropy field (∼100 kOe) is attributed to the Er and the Co sublattices. Domain wall pinning effect seems to play a crucial role in determining the temperature and field dependences of magnetization in these compounds. The hard magnetic properties obtained at room temperature (RT) are comparable to the best results obtained in other RCo7 based materials.  相似文献   

13.
Cerium-doped Y1−xCexMnO3 compounds have been prepared in single-phase form for x=0 to 0.10. X-ray diffraction (XRD) patterns could be analyzed by using P63cm space group. Temperature variations of ac susceptibility and magnetization measurements show that these Ce-doped materials exhibit weak ferromagnetic transition. The observed ferromagnetic transition is attributed to the double exchange ferromagnetic interaction between Mn2+ and Mn3+ ions due to electron doping. The MH loops exhibit hysteresis along with linear contribution and were analyzed based on bound magnetic polaron (BMP) model. Increase in saturation magnetization and decrease in BMP concentrations have been observed with increase in Ce doping.  相似文献   

14.
The magnetizations of Zr76Ni24 metallic glass and hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses have been measured in the temperature range 10-300 K and magnetic fields up to 2 T for various dopant concentrations (x=0, 0.024, 0.043, 0.054). It is found that the samples are paramagnetic and magnetic susceptibility at room temperature, χ(300 K), shows a nonmonotonic behaviour upon hydrogenation. The values of χ(300 K) of the hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses are reduced with increase in hydrogen content up to x=0.043, whereas for x=0.054, an enhancement of χ(300 K) has been revealed. The magnetic susceptibility is weakly temperature dependent down to 110 K, below which an increase is observed. A shallow minimum exists between 90 and 120 K. The form and magnitude of the observed temperature dependence of the magnetic susceptibility are well accounted for by the sum of the quantum corrections to the magnetic susceptibility. Hydrogen reduces the electronic diffusion constant and influences strongly the quantum interference at defects, slowing down the spin diffusion and enhancing the magnetic susceptibility in the temperature range from 110 down to 10 K.  相似文献   

15.
In this work, we have investigated the effect of the substitution of Gd for Pr on the crystal structure and magnetic properties of the Pr1−xGdxCo4B compounds for 0?x?1 using X-ray powder diffraction, magnetic measurements, and differential scanning calorimetry (DSC). These compounds have hexagonal CeCo4B-type structure with the space group P6/mmm. The substitution of Gd for Pr leads to a decrease of the unit-cell parameters a and the unit-cell volume V, while the unit-cell parameter c increases slightly. Magnetic measurements indicate that all samples are ordered magnetically below room temperature. The Curie temperatures determined by DSC technique increase as Pr is substituted by Gd. The saturation magnetization at 5 K decreases upon Gd substitution up to x=0.6, and then increases again.  相似文献   

16.
A systematic study of exchange bias in MnPd/Co and MnPd/Co1−xFex bilayers has been carried out. Very large unidirectional anisotropy constant of 2.2 erg/cm2 and the appearance of double-shifted loops, ascribed to the coexistence of positive and negative exchange bias, have been observed. The dependence of exchange bias, unidirectional anisotropy constant and coercivity on thickness, temperature, annealing regime and Fe content has been investigated and discussed.  相似文献   

17.
Magnetization curves with various magnetic field orientations and nanowire diameters were measured at room temperature. The measured coercivity as a function of angle (θ) between the field and wire axis reveals that the coercivity decreases with increasing value of θ for various nanowires. Theoretically, based on Monte Carlo simulation we investigated the magnetization reversal modes of the Co1−xCux nanowires and obtained also the θ dependence of the coercivity. Comparing the simulated with the experimental results, we find that the magnetocrystalline anisotropy plays an important role on the magnetic properties of Co1−xCux nanowires, and the magnetization reversal process in the Co1−xCux nanowires could not be understood by the classical uniform rotation mode in the chain-of-sphere model.  相似文献   

18.
We have examined magnetizations as a function of temperature and magnetic field in layered perovskite manganites La2−2xSr1+2xMn2O7 single crystals (x=0.313, 0.315, 0.318, 0.320 and 0.350) in order to determine the phase boundary between two ferromagnets (one is an uniaxial ferromagnet whose easy axis is parallel to the c-axis and the other is a planar ferromagnet whose easy axis is within the ab-plane) and following results are obtained: (i) all the present manganites exhibit magnetic transitions from a ferromagnet to a paramagnet at 76, 107, 116, 120 and 125 K for x=0.313, 0.315, 0.318, 0.320 and 0.350, respectively; (ii) for x=0.318, 0.320 and 0.350, the magnetic structure is a planar ferromagnet below Curie temperature; (iii) for x=0.313 and 0.315, the magnetic structure changes from an uniaxial to a planar ferromagnet at 66 and 85 K, respectively. From the results described above we have constructed the magnetic phase diagram of layered perovskite manganite La2−2xSr1+2xMn2O7 (0.313?x?0.350).  相似文献   

19.
Magnetic properties of the Ce2Fe17−xMnx, x=0–2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5–1 are helical antiferromagnets and those with 1<x?2 are helical ferromagnets or helical antiferromagnets at low and high T, respectively. Mn ions in the system carry average magnetic moment of 3.0±0.2 μB that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce2Fe17−xMnx compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce2Fe17−xMnx helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce2Fe17−xMnx, x=0.5–2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated.  相似文献   

20.
The La1−xCexMn2Si2 compounds (x=0.35 and 0.45) exhibit an antiferromagnetic-ferromagnetic transition caused by the changes in distance between Mn atoms due to temperature changes. A field-induced transition from antiferromagnetic state to ferromagnetic state at a critical field, which decreases with increase in temperature, can also be induced by applying a magnetic field. In this paper our aim is to study the magnetization and magnetocaloric effect, close to transition temperatures. Our subsidiary aim is to examine the temperature dependence of critical field and ferromagnetic fraction of compounds. The variation of magnetocaloric effect with temperature is correlated with the ferromagnetic-antiferromagnetic phase coexistence. Our final aim is to examine the harmony between magnetocaloric effect values calculated both by the Maxwell theory and by the Landau theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号