首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Considering demagnetization effect, the model used to calculate the magnetostriction of the single particle under the applied field is first created. Based on Eshelby equivalent inclusion and Mori-Tanaka method, the approach to calculate the average magnetostriction of the composites under any applied field, as well as the saturation, is studied by treating the magnetostriction particulate as an eigenstrain. The results calculated by the approach indicate that saturation magnetostriction of magnetostrictive composites increases with an increase of particle aspect and particle volume fraction, and a decrease of Young's modulus of the matrix. The influence of an applied field on magnetostriction of the composites becomes more significant with larger particle volume fraction or particle aspect. Experiments were done to verify the effectiveness of the model, the results of which indicate that the model only can provide approximate results.  相似文献   

2.
Magnetostriction characteristics of Mn substituted cobalt ferrite, CoFe2?xMnxO4 (0 ≤ x ≤ 0.3), sintered from nanocrystalline powders of average particle size of ~4 nm have been studied. Larger value of magnetostriction at lower magnetic field is achieved after substitution of Mn for Fe. The maximum value of magnetostriction coefficient is not much affected and the slope of the magnetostriction is increased with increasing Mn content. Higher maximum value of magnetostriction coefficient (λ) of 234 ppm comparable to that of the unsubstituted composition with larger strain derivative (/dH) is obtained for x = 0.2 in CoFe2?xMnxO4. The magnetostriction coefficient is increased to 262 ppm with further enhancement in the strain derivative after annealing the sintered compact at 300 °C in a magnetic field of 400 kA/m for 30 min.  相似文献   

3.
This paper reports an experimental work on the convective heat transfer of ferrofluid flowing through a heated copper tube in the laminar regime in the presence of magnetic field. Significant enhancement on the heat transfer of ferrofluid by applying various orders of magnetic field is observed in this experiment. Also in this experiment, the effect of magnetic nanoparticles concentrations and magnet position have been investigated. The main reason for the enhancement of heat transfer coefficient could be caused due to remarkable changes in thermophysical properties of ferrofluid under the influence of applied magnetic field.  相似文献   

4.
Laminated magnetoelectric (ME) composites with various thickness ratios were optimized, fabricated and experimentally investigated in this work. The Terfenal-D/PZT specimens with optimal thickness ratio between the magnetostrictive phase and piezoelectric phase, and two other values were tested for their ME coupling performance. The coupling voltage output increases linearly with the increase of DC bias magnetic field. The ME voltage coefficient increases more than 100 times in the resonance state for the optimal laminate. The DC bias magnetic field affects the ME voltage coefficient significantly, and also has little effect on the resonant frequency. The strength of AC magnetic field also slightly affects the ME voltage coefficient in resonance state, but does not affect the resonant state under which the same DC magnetic field is required. The experimental results can help understand the coupling performance of ME composite under bias magnetic field and prompt the application of ME devices.  相似文献   

5.
讨论了静态非均匀磁场中的磁场旋度对带电粒子引导中心漂移的影响。运用三维矢量分析的方法,将带电粒子垂直于磁场运动所引起的磁场漂移分为两项,分别由磁场的曲率和磁场的旋度决定。给出了螺旋状环形磁场中由磁场旋度引起的磁场漂移的近似表达式,讨论了该漂移成分对于该磁场中通行粒子轨道和捕获粒子轨道的可能影响。结果表明,带电粒子垂直于磁场运动所引起的磁场漂移主要由磁场的曲率决定,而磁场旋度对该漂移的影响比较微弱。  相似文献   

6.
This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ?) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from −20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ?. It is established that, at high frequencies, the μ? of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ? in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.  相似文献   

7.
讨论了静态非均匀磁场中的磁场旋度对带电粒子引导中心漂移的影响。运用三维矢量分析的方法,将带电粒子垂直于磁场运动所引起的磁场漂移分为两项,分别由磁场的曲率和磁场的旋度决定。给出了螺旋状环形磁场中由磁场旋度引起的磁场漂移的近似表达式,讨论了该漂移成分对于该磁场中通行粒子轨道和捕获粒子轨道的可能影响。结果表明,带电粒子垂直于磁场运动所引起的磁场漂移主要由磁场的曲率决定,而磁场旋度对该漂移的影响比较微弱。  相似文献   

8.
阳昌海  文玉梅  李平  卞雷祥 《物理学报》2008,57(11):7292-7297
根据磁致伸缩材料的非线性本构关系得到其动态杨氏弹性模量和动态压磁系数,结合等效电路法得到磁致伸缩/弹性/压电层合材料的磁电效应与磁致伸缩材料的动态杨氏弹性模量和动态压磁系数的关系,讨论了偏置磁场对这种层合材料的谐振频率和谐振磁电电压转换系数的影响.理论推导和实验结果均表明,存在最佳偏置磁场使磁致伸缩/弹性/压电层合材料的谐振磁电电压转换系数最大. 关键词: 磁致伸缩/弹性/压电层合材料 磁电效应 偏置磁场 非线性本构关系  相似文献   

9.
The influence of different heat treatments on the magnetic and magnetoelastic properties of highly magnetostrictive CoFe2O4 has been investigated. The first order cubic anisotropy coefficient, coercive field, magnetostriction and high strain sensitivity were observed to decrease as the heat treatment temperature increased. The saturation magnetization of the samples on the other hand increased with increase in heat treatment temperature. These changes were not accompanied by any observable changes in crystal structure or composition and are indicative of migration of Co2+ from the octahedral sites (B-sites) to the tetrahedral sites (A-sites) and Fe3+ from the A-sites to the B-sites of the spinel structure. Different distributions of the cations at the two distinct lattice sites can strongly affect the magnetic and magnetoelastic properties of these materials.  相似文献   

10.
Mg-AZ91E/TiCp composite was fabricated using a spontaneous infiltration technique at 950 °C under an argon atmosphere. The composites produced have 37 vol.% of metal matrix and 63 vol.% of TiC-like reinforcement. The obtained composites were subsequently solution heat-treated at 413 °C during 24 h, cold water quenched, and subsequently artificially aged at 168 and 216 °C during 16 h in an argon atmosphere. Effect of heat treatment on the microstructure and mechanical properties was evaluated. Microstructural characterization was analyzed using different techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM). Interface between matrix and reinforcement was examined using transmission electron microscopy (TEM), and mechanical properties were evaluated by measuring the elastic modulus and hardness. Mg, TiC, Al, and Mg17Al12 phases through XRD were detected. Meanwhile, using TEM analysis in heat-treated composites MgAl2O4, MgO, and Al2O3 were identified. The as-fabricated composite have elastic modulus and hardness of 162 GPa and 316 Hv, respectively. After solution heat treatment and aging at 168 °C during 12 h, the composites reaches values of 178 GPa and 362 Hv for the elastic modulus and hardness, respectively. Time of aging was correlated with measures of elastic modulus and hardness.  相似文献   

11.
Atomic force microscopy was used to distinguish changes in morphology of bacteria induced by 50 Hz 10 mT magnetic field exposure. It is known that alternating magnetic field exposure causes decrease of viability of different bacterial strains. Previously we found that the viability of rod-like bacteria exposed to magnetic field decreased twice more in comparison with the spherical ones. Motivated by this fact we carried out this study with bacterial cells of both shapes. We used Escherichia coli (rod-like) and Paracoccus denitrificans (spherical) bacteria. As a result we have not observed any change in bacterial morphology neither of rod-like nor of spherical bacteria after 1 h, 50 Hz and 10 mT magnetic field exposure.  相似文献   

12.
13.
Propagating in the nonferromagnetic electron gas on the cylindrical nanotube's surface spin waves in longitudinal magnetic field are considered. The spectrum of electrons in the Hartree-Fock approximation was applied. The dynamic spin susceptibility of a degenerate electron gas was derived using the random phase approximation. The spectra of intra-subband and inter-subband magnons were calculated in quasiclassical and quantum limits. The quantity of spin waves spectrum branches depends on the amount of filled subbands. In case the filled subband numbers are large, the wave's frequencies undergo oscillations of de Haas-van Alphen and Aharonov-Bohm types with the electron density and the magnetic induction changes.  相似文献   

14.
The transformed microstructures of the high-purity Fe-0.12C alloy and Fe-0.36C alloy heat treated without and with a 12 T magnetic field have been investigated to explore the carbon-content dependent field effect on austenitic decomposition in steels. Results show that, the field-induced transformed morphology characteristics in different alloys differ from each other. In the Fe-0.12C alloy, the pearlite colonies are elongated along the field direction, and shaped by the chained and elongated proeutectoid ferrite grains in the field direction. However, in the Fe-0.36C alloy, the field mainly reduces the amount of Widmänstatten ferrite and elongates the formed proeutectoid ferrite grains in the field direction. No clear field direction alignment is obtained. The magnetic field also demonstrates carbon-content dependent effect on the texture of the formed ferrite. It clearly enhances the 〈001〉 fiber of the ferrite in the transverse field direction in the Fe-0.36C alloy. This field effect is related to the crystal lattice distortion induced by carbon solution and this impact becomes stronger with the increase of the carbon content. For the Fe-0.12C alloy, this field effect is greatly reduced due to the reduced carbon oversaturation in ferrite and elevated formation temperature. The orientation relationships (ORs) between the pearlitic ferrite and the pearlitic cementite in both alloys are less affected by the magnetic field. No obvious changes in the either type of the appearing ORs and their number of occurrences are detected.  相似文献   

15.
斜抽运无机液体激光器的流场热分布   总被引:1,自引:0,他引:1       下载免费PDF全文
激光二极管斜抽运的多增益段串接的液体激光器能够明显地提高激光光束质量、获得较高的输出功率.针对斜抽运子增益段工作时所涉及的流动、传热和壁面耦合,建立了计算子增益段流场热分布的流-热-固耦合模型,应用有限单元法完成了其瞬态流场热分布的数值模拟.该方法排除了不精确的换热系数对计算结果的影响,使得换热系数不再是计算的先决条件,而只是计算结果之一,并且为评价流道形状、流速、吸收系数等因素对流场热的影响,以及进一步改进和控制液体激光介质的流场热分布,提供了可靠的分析方法.数值模拟研究表明:换热系数是空间位置的函数,  相似文献   

16.
17.
为了保障 HL-2M 装置磁场电源的供电安全,其逻辑保护系统设计了 4 级保护机制,分别在主机线 圈、电源变流器、整流变压器、交流开关柜设置保护检测器件,按保护等级确定逻辑保护策略。通过 HL-2M 装 置放电实验,验证了逻辑保护系统的可行性和稳定性。  相似文献   

18.
根据离子与径向磁场的约束关系,用面向对象的单元粒子法模拟了极向偏转器中等离子体束流在均匀和非均匀径向磁场中的运动情况,得到了在磁边界效应下极向偏转器内部畸变电场的分布,分析了对质量分离的影响。模拟成果对质量分离器、质谱分析仪及材料提纯等装置的研制、特殊位形电磁场控制多质量束流等相关领域的研究有参考价值。  相似文献   

19.
The effects of grinding on interparticle magnetic interactions for an ensemble of agglomerated MnFe2O4 nanoparticles have been studied. Structural analyses showed that by grinding the samples, a small variation in size of crystallites and lattice strain will occur. ac Magnetic susceptibility measurements under different conditions and spin dynamics analysis suggest that freezing temperature is frequency dependent and it is in good agreement with critical slowing down model. This is an indication that these nanoparticles have superspin glass behavior. The estimated and τ0 parameters using critical slowing down model show that by increasing the grinding time the interaction between nanoparticles decreases. ac Susceptibility measurements in cooling and heating process show a thermal hysteresis. The thermal hysteresis decreased by increasing the grinding time. Also, the thermal hysteresis is frequency dependent and it increased as frequency decreased. These results showed that interparticle interactions such as dipole-dipole and exchange interactions between nanoparticles become weaker by grinding.  相似文献   

20.
A rotamak is one kind of compact spherically shaped magnetic-confinement device. In a rotamak the plasma current is driven by means of rotating magnetic field (RMF). The driven current can reverse the original equilibrium field and generate a field-reversed-configuration. In a conventional rotamak, a toroidal field (TF) is not necessary for the RMF to drive plasma current, but it was found that the present of an additional TF can influence the RMF current drive. In this paper the effect of TF on the RMF current drive in a rotamak are investigated in some detail. The experimental results show that addition of TF increases the RMF driven current greatly and enhances the RMF penetration dramatically. Without TF, the RMF can only penetrate into plasma in the edge region. When a TF is added, the RMF can reach almost the whole plasma region. This is an optimal strength of toroidal magnetic field for getting maximum plasma current when Bv and radio frequency generator power are fixed. Besides driving current, the RMF generates high harmonic fields in rotamak plasma. The effect of TF on the harmonic field spectra are also reported.[第一段]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号