首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

2.
Three series of SmCo5.6Ti0.4 samples were prepared by quenching, melt spinning, and ball milling, respectively. Annealing at different temperatures was carried out for the three series. The influence of the processing routes on the structural and magnetic properties was systematically investigated for this alloy. The as-quenched bulk sample consisted of three phases with a rather coarse grain microstructure. Low intrinsic coercivity (iHc) of 0.12 T was obtained in this sample. While the as-spun ribbons and as-milled/annealed powders showed the CaCu5-type phase (1:5) plus Th2Zn17-type phase (2:17), and the 1:5 phase plus TbCu7-type phase (1:7), respectively, with nanograin microstructure. The iHc of as-spun ribbons and as-milled/annealed (700 °C for 2 h) powders was found to be 0.59 and 2.23 T, respectively. Coercivity mechanism of these as-spun ribbons is mainly of nucleation type. In the as-milled/annealed powders, the network of the nanograin boundaries is believed to provide strong pinning sites for the domain wall movement.  相似文献   

3.
Magnetic properties, microstructure, and phase evolution of Pr lean and boron-enriched PrxFebal.TiyB20−x (x=4–9; y=2.5–5) melt-spinning ribbons with nanostructures have been investigated. Based on thermal magnetic analysis (TMA), for y=2.5, two phases, namely Pr2Fe14B and α-Fe, were found for ribbons with x=9, while additional two metastable phases, Pr2Fe23B3 and Fe3B, existed for x=4, 7 and 8. With the decrease of Pr content, the remanence increases but coercivity decreases. The optimal properties of Br=9.5 kG, iHc=10.7 kOe, and (BH)max=17.8 MG Oe are achieved in Pr9Febal.Ti2.5B11 nanocomposites. On the other hand, higher Ti substitution for Fe in Pr7Febal.TiyB13 ribbons could refine the grain size and suppress the metastable Pr2Fe23B3 and Fe3B phases effectively. The excellent permanent magnetic properties are mainly dominated by the nanoscaled microstructures and the coexistence of sufficient magnetically soft phases, Fe3B, Pr2Fe23B3 and α-Fe, with magnetically hard Pr2Fe14B phase.  相似文献   

4.
Curie temperature, crystal structure and crystallization behavior of amorphous alloys with the stoichiometry Fe81−xNixZr7B12 (x=10–60) have been studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and AC-magnetization (TMAG) measurements as functions of temperature. The thermal stability of long-range magnetic order, TC vs. Ni content in as-quenched amorphous alloys exhibits maximum at 352 °C for x=40. The primary crystallization has been detected during annealing at the first crystallization stage of all ribbons investigated.  相似文献   

5.
Co-doped TiO2 films were fabricated under different conditions using reactive facing-target magnetron sputtering. Co doping improves the transformation of TiO2 from anatase phase to rutile phase. The chemical valence of doped Co in the films is +2. All the films are ferromagnetic with a Curie temperature above 340 K. The average room-temperature moment per Co of the Co-doped TiO2 films fabricated at 1.86 Pa decreases from 0.74 μB at x=0.03 to 0.02 μB at x=0.312, and decreases from 0.54 to 0.04 μB as x increases from 0.026 to 0.169 for the Co-doped TiO2 films fabricated at 0.27 Pa. The ferromagnetism originates from the oxygen vacancies created by Co2+ dopants at Ti4+ cations. The optical band gaps value (Eg) of the Co-doped TiO2 films fabricated at 1.86 Pa decreases linearly from 3.35 to 2.62 eV with the increasing x from 0 to 0.312. For the Co-doped TiO2 films fabricated at 1.86 Pa, the Eg decreases linearly from 3.26 to 2.53 eV with increasing x from 0 to 0.350.  相似文献   

6.
In boron-substituted melt-spun Sm(Co,Fe,Cu,Zr)7.5-type alloys a nanocomposite microstructure and high coercivities in both as-spun and short-time annealed ribbons can be obtained. In the present study three different compositions, namely Sm(Co0.73Fe0.1Cu0.09Zr0.04B0.04)7.5, Sm(Co0.70Fe0.1Cu0.12Zr0.04B0.04)7.5 and Sm(Co0.70Fe0.1Ni0.12Zr0.04B0.04)7.5 have been examined in order to investigate the influence of composition on the magnetic properties and the microstructure. Melt-spun ribbons have been obtained and annealing has been followed under argon atmosphere for 30–75 min at 600–870 °C. For the as-spun ribbons the TbCu7-type of structure and fcc-Co as a secondary phase have been identified in the X-ray diffraction patterns. For the annealed ribbons above 700 °C the 1:7 phase transforms into 2:17 and 1:5 phases. The TEM studies have shown a homogeneous nanocrystalline microstructure with average grain size of 30–80 nm. Coercivity values of 15–27 kOe have been obtained from hysteresis loops traced in non-saturating fields. The coercivity decreases with temperature, but it is sufficiently large to maintain values higher than 5 kOe at 380 °C.  相似文献   

7.
We have investigated the influence of composition and annealing conditions on the magnetic properties and microstructural features of SmCox films that were prepared by sputtering and subsequent annealing. A huge in-plane coercivity of 5.6 T was obtained from an optimally annealed Sm–Co film, which was attributed to the nanometer sized polycrystalline microstructure of the highly anisotropic SmCo5 phase. Although a high density of planar defects were observed in the films that were annealed at high temperatures, they did not act as strong pinning sites for domain wall motion. The effect of Cu on [SmCo4.5(9 nm)/Cu(xnm)]10 multilayer thin films was also studied. An appropriate Cu content increased the coercivity.  相似文献   

8.
Mixed manganese-zinc and nickel-zinc ferrites of composition Mn0.2Ni0.8−xZnxFe2O4 where x=0.4x=0.4, 0.5 and 0.6 have been synthesized by the citrate precursor technique. Decomposition of the precursor at temperatures as low as 500 °C gives the ferrite powder. The ferrites have been investigated for their electrical and magnetic properties such as saturation magnetization, initial permeability, Curie temperature, AC-resistivity and dielectric constant as a function of sintering temperature and zinc content. Structural properties such as lattice parameter, grain size and density are also studied. The mixed compositions exhibited higher saturation magnetizations at sintering temperatures as low as 1200 °C. While the Curie temperature decreased with zinc content, the permeability was found to increase. The AC-resistivity ranged from 105–107 Ω cm and decreased with zinc content and sintering temperature. The dielectric constants were lower than those normally reported for the Mn–Zn ferrites. Samples sintered at 1400 °C densified to about 94% of the theoretical density and the grain size was of the order of about 1.5 μm for the samples sintered at 1200 °C and increased subsequently with sintering temperature.  相似文献   

9.
Amorphous soft magnetic ribbons Fe73.5−xCrxSi13.5B9Nb3Cu1 (x=1–5) have been fabricated by rapid quenching on a single copper wheel. The differential scanning calorimetry (DSC) patterns showed that the crystallization temperature of α-Fe(Si) phase is ranging from 542 to 569 °C, a little higher than that of pure Finemet (x=0). With the same annealing regime, the crystallization volume fraction as well as the particle size of α-Fe(Si) crystallites decreased with increasing Cr amount substituted for Fe in studied samples. Especially, the interesting fact is that the laminar structure of heat-treated ribbons on the surface contacted to copper wheel in the fabricating process has been firstly discovered and explained to be related to the existence of Cr in studied samples. The hysteresis loop measurement indicated that there is the pinning of displacement of domain walls. The giant magnetocaloric effect (GMCE) has been found in amorphous state of the samples. After annealing, the soft magnetic properties of investigated nanocomposite materials are desirably improved.  相似文献   

10.
The effect of Ti and C additions on the corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5TixCx (x=0, 1.5, 3, 6) isotropic nanocomposite melt-spun ribbons in 3.5 wt% sodium chloride solution was studied. The melt-spun ribbons were annealed at 750 °C for 10 min in argon-filled quartz capsules. The microstructure of multiphase nanocrystalline samples and corrosion products was characterized using the X-ray diffraction and electron microscopy techniques. The electrochemical behavior was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the addition of Ti and C increases the corrosion resistance of NdFeB ribbons; the best corrosion resistance was obtained for 1.5 wt% Ti and C content.  相似文献   

11.
Nanocrystalline (Nd,Dy)16(Fe,Co)76−xTixB8 magnets were prepared by mechanical alloying and respective heat treatment at 973–1073 K/30–60 min. An addition of 0.5 at % of Ti results in an increase of coercivity from 796 to 1115 kA m−1. Partial substitution of Nd by Dy results in an additional increase of coercivity up to 1234 kA m−1. Mössbauer investigations shows that for x?1 the (Nd,Dy)16(Fe,Co)76−xTixB8 powders are single phase. For higher Ti contents (x>1) the mechanically alloyed powders heat treated at 973 K are no more single phase, and the coercivity decreases due to the presence of an amorphous phase. A heat treatment at a higher temperature (1073 K) for longer time (1 h) results in the full recrystallisation of powders. The mean hyperfine field of the Nd2Fe14B phase decreases for titanium contents of 0?x?1, and remains constant for x>1. This indicates that the Ti content in the Nd2Fe14B phase reaches its maximum value.  相似文献   

12.
Co-doped TiO2 (CoxTi1−xO2, 0.05?x?0.2) films have been prepared on Si (0 0 1) substrates by sol–gel method. When heat treated in air, CoxTi1−xO2 films are non-ferromagnetic at room temperature. However, after further annealed in a flowing hydrogen atmosphere, CoxTi1−xO2 films show room-temperature ferromagnetism (RTFM). Measurements of magnetization (M) vs. temperature (T), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) fail to detect Co clusters in the hydrogenated Co0.1Ti0.9O2 films, suggesting that RTFM in the hydrogenated Co0.1Ti0.9O2 films may be intrinsic. But, metal Co appears in the hydrogenated Co0.2Ti0.8O2 films, showing that RTFM in the hydrogenated Co0.2Ti0.8O2 films is as least partly due to metal Co. These results indicate that hydrogen annealing can produce room-temperature ferromagnetism in CoxTi1−xO2 films, but it should be carefully designed to avoid the formation of metal Co in the hydrogenated CoxTi1−xO2 films.  相似文献   

13.
Studies of magnetic and structural properties of Fe3.5Co66.5Si12−xGexB18 (x=0, 3, and 6) soft magnetic ribbons obtained by melt-spinning were performed. The samples were submitted to Joule-heating treatments with different maximum current values (0.01, 0.05, 0.1, 0.2, and 0.8 A, respectively) with steps of 0.01 A and times by step of 1, 2, and 10 s). X-ray diffraction, temperature dependence of magnetization (for the as-quenched samples), coercivity and giant magnetoimpedance (GMI), measured at different frequencies (100, 500, and 900 kHz, respectively) were performed. All the samples crystallized at annealing currents higher than 0.4 A, which was consistent with the magnetic hardening of the material. Coercivities less than 1 A/m were obtained for the three samples between 0.1 and 0.2 A. Maximum value of GMI response was observed for the sample without Ge in the as-quenched state.  相似文献   

14.
The effect of crystal structures on texture induced by hot plastic deformation was studied for Sm-Co, Sm-Zr-Co, Sm-Zr-Co-Fe and Sm-Co-Fe-Mn nanocrystalline alloys with 9-22 at% Sm. Nanocrystalline precursors were obtained via high-energy ball milling and subsequent hot consolidation; deformation was carried out at 800-1150 °C. The analysis of X-ray diffraction and magnetic measurements showed that the degree of the axial [0 0 1] texture after deformation was negligible for the ordered 2:17 structure, but became increasingly noticeable for the disordered 2:17 (“1:7”), 1:5 and 2:7 structures. Because of interplay of several factors including the [0 0 1] texture, saturation magnetization and magnetocrystalline anisotropy, there was no universal trend in the hard magnetic properties with the Sm content. Optimum compositions for the maximum energy product varied from Sm11(Co, Fe, Mn)89 in the Sm-Co-Fe-Mn series to Sm11Zr2(Co, Fe)87 in the Sm-Zr-Co-Fe series to Sm17(Co, Fe)83 in the Sm-Co-(Fe) series. Iron substitution for cobalt strongly suppresses the 1:5 structure, whereas the Fe-free magnets based on the SmCo5 compound showed by far the highest room-temperature coercivity.  相似文献   

15.
Zn1−xNixFe2O4 ferrite nanoparticles were prepared by sol–gel auto-combustion and then annealed at 700 °C for 4 h. The results of differential thermal analysis indicate that the thermal decomposition temperature is about 210 °C and Ni–Zn ferrite nanoparticles could be synthesized in the self-propagating combustion process. The microstructure and magnetic properties were investigated by means of X-ray diffraction, scanning electron microscope, and Vibrating sample magnetometer. It is observed that all the spherical nanoparticles with an average grain size of about 35 nm are of pure spinel cubic structure. The crystal lattice constant declines gradually with increasing x from 0.8435 nm (x=0.20) to 0.8352 nm (x=1.00). Different from the composition of Zn0.5Ni0.5Fe2O4 for the bulk, the maximum Ms is found in the composition of Zn0.3Ni0.7Fe2O4 for nanoparticles. The Hc of samples is much larger than the bulk ferrites and increases with the enlarging x. The results of Zn0.3Ni0.7Fe2O4 annealed at different temperatures indicate that the maximum Ms (83.2 emu/g) appears in the sample annealed at 900 °C. The Hc of Zn0.3Ni0.7Fe2O4 firstly increases slightly as the grain size increases, and presents a maximum value of 115 Oe when the grains grow up to about 30 nm, and then declines rapidly with the grains further growing. The critical diameter (under the critical diameter, the grain is of single domain) of Zn0.3Ni0.7Fe2O4 nanoparticles is found to be about 30 nm.  相似文献   

16.
Structural, electrical, and magnetic properties of Ni1−xZnxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures have been investigated thoroughly. The bulk density of the Ni0.8Zn0.2Fe2O4 samples increases as the sintering temperature (Ts) increases from 1200 to 1300 °C and above 1300 °C the bulk density decreases slightly. The Ni0.6Zn0.4Fe2O4 samples show similar behavior of changes to that of Ni0.8Zn0.2Fe2O4 samples, except that the bulk density is found to be the highest at 1350 °C. The DC electrical resistivity, ρ(T)ρ(T), decreases as the temperature increases indicating that the samples have semiconductor-like behavior. As the Zn content increases, the Curie temperature (Tc), resistivity, and the activation energy decrease while the magnetization, initial permeability, and the relative quality factor (Q) increases. A Hopkinson peak is obtained near Tc in the real part of the initial permeability vs. temperature curves. The ferrite with higher permeability has a relatively lower resonance frequency. The initial permeability and magnetization of the samples has been found to correlate with density, average grain sizes. Possible explanation for the observed structural, magnetic, and changes of resistivity behavior with various Zn content are discussed.  相似文献   

17.
Thin films of Ti1−xCoxO2 (x=0 and 0.03) have been prepared on sapphire substrates by spin-on technique starting from metalorganic precursors. When heat treated in air at 550 and 700 °C, respectively, these films present pure anatase and rutile structures as shown both by X-ray diffraction and Raman spectroscopy. Optical absorption indicate a high degree of transparency in the visible region. Such films show a very small magnetic moment at 300 K. However, when the anatase and the rutile films are annealed in a vacuum of 1×10−5 Torr at 500 and 600 °C, respectively, the magnetic moment, at 300 K, is strongly enhanced reaching 0.36μB/Co for the anatase sample and 0.68μB/Co for the rutile one. The ferromagnetic Curie temperature of these samples is above 350 K.  相似文献   

18.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed.  相似文献   

19.
Nanocrystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x=0, 0.2, 0.4), were for the first time prepared by forced hydrolysis method. Magnetic and structural properties in these specimens were investigated. The average crystallite size is about 3.0 nm. When the zinc substitution increases from x=0 to x=0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g and the coercive field decreases from 1.22 to 0.71 T. All samples are superparamagnetic at room temperature and ferrimagnetic at temperatures below the blocking temperature. The high value of the saturation magnetization and the very thin thickness of the disorder surface layer of all samples suggests that this forced hydrolysis method is suitable not only for preparing two metal element systems but also for three or more ones.  相似文献   

20.
Two methods—the solid-phase high-temperature (1300 °C) and the liquid-phase low-temperature (750 °C) routes—were used to synthesize the complex oxide La1.25Sr0.75MnCoO6, which has the structure of rhombohedral perovskite and is characterized by a disordered distribution of Mn and Co in structural sites. It was found by means of X-ray absorption near edge spectroscopy (XANES) at the K-edge that mixed valence states of Co2+/Co3+ and Mn3+/Mn4+, exist in both phases. Measurements of dc magnetization and real (χ′) and imaginary (χ″) parts of the ac susceptibility showed that the magnetic properties of these oxides are determined by a ferromagnetic transition at TC=217 K and a frequency-dependent transition at Tg<100 K. The high frequency dependence of Tg is indicative of the cluster-glass behavior of La1.25Sr0.75MnCoO6 (7 5 0) at T<TC within the ferromagnetic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号