首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
 在对高阶模飞行光学聚焦特性进行研究的基础上,提出了应用自适应飞行光学聚焦系统来解决飞行光学聚焦特性的问题,对自适应飞行光学聚焦系统的调节特性进行了数值模拟,结果表明该系统能够实现对长距离飞行光学激光加工过程中焦点位置与焦斑大小的控制。  相似文献   

2.
祝敬敏  王顺金 《物理学报》2006,55(10):5018-5022
在有限温度环境内,量子约束动力学及其追踪控制可使退相干系统的相干性稳定一段时间.约束方程产生的控制场能够按量子比特的动力学状态进行控制(量子动力学轨道的反馈控制);依靠量子比特的这种反馈效应,可使量子位稳定在设定的时间内.同时,在量子位的稳定方面,温度扮演一种消极的角色. 关键词: 量子约束动力学 耗散量子位的控制 追踪控制 量子比特的反馈效应  相似文献   

3.
In thermal shrinkage process for polyethylene terephthalate (PET) films, PET film is uniaxially stretched and then thermally relaxed. We investigate the effect of heat relaxation temperature on the thermal shrinkage of uniaxially stretched PET film using molecular dynamics simulation method. Through our investigation, we find that the thermal shrinkage ratio of the amorphous PET film is reduced as a function of heat relaxation temperature, whereas the skirt ratio is weakly correlated with the heat relaxation temperature, exhibiting the most negative skirt ratio in the case of the highest thermal shrinkage ratio. Our analysis on the PET film at molecular level further verifies that the trans-gauche transformation observed in ethylene glycol units during the simulated process is a driving force for the thermal shrinkage of uniaxially stretched PET systems.  相似文献   

4.
Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the “obvious” velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten.  相似文献   

5.
The energetic and structural evolution of a squared gold nanowire under heating process is investigated via molecular dynamics with many-body potential. The simulations reveal that the nanowire undergoes distinct energetic and structural developments during the following four heating processes: low temperature, melting, breaking and high temperature. The cross-section of nanowire is found to change from a square to a circle shape with rising temperature at first. A neck is then found to be initiated above the overall melting point, followed by the formation of a two- to five-atom-thick chain structure before the breaking of neck. The nanowire transforms to a spherical cluster after the final breaking.  相似文献   

6.
The thermal conductivity of carbon nanotubes with geometric variations of doped nitrogen is investigated. The phenomenon of thermal rectification shows that the heat transport is preferably in one direction. The asymmetric heat transport of the triangular single-nitrogen-doped carbon nanotubes (SNDCNTs) is larger than that of the parallel various-nitrogen-doped carbon nanotubes (VNDCNTs).  相似文献   

7.
An opinion dynamics model for a Command and Control (C2) organization is essential for simulating combat system effectiveness. However, few studies have addressed opinion evolution in C2 simulation. With the goal of overcoming this research gap, this paper proposes an opinion exchange model, which is illustrated through a practical example of an Armored Division network. The model is divided into homogeneous and heterogeneous aspects: the former is mainly characterized by communication rules and types, while the latter is extended with the influence of multi-level opinion leaders. After carrying out the simulation of the two main models, the results show that the opinion evolution of the hierarchical leveled C2 organization with descending influence is much more complex and unpredictable than that of social networks.  相似文献   

8.
The thermal decomposition of the monomer and dimer of lignin has been simulated by a quantum molecular dynamics (DMD) method. In the calculation, we controlled the total energy of the system using Nóse-Hoover thermostats in the total energy range of 0.69-0.95 eV, and the sampling position data with a time step of 0.5 fs were carried out up to 3000 (1.5 ps) or 5000 (2.5 ps) steps in ab initio and semiempirical MO methods, respectively. We obtained the thermally decomposed fragments with positive, neutral and negative charges from SCF MO calculation at each data of the last MD step, and simulated the fragment distribution of the monomer and dimer lignins from the last step in 30-40 runs. Simulated mass numbers of positively and negatively charged fragments for lignin monomer and dimer showed considerably good accordance with the experimental results in TOF-SIMS observed by Saito and co-workers.  相似文献   

9.
On nanoscale, thermal conduction is affected by system size. The reasons are increased phonon scattering and changes in phonon group velocity. In this paper, the in-plane thermal resistivity of nanoscale silicon thin films is analyzed by molecular dynamics (MD) techniques. Modifications to the dispersion relation are calculated directly with MD methods at high temperature. The results indicate that the dispersion relation starts to change for very thin films, at around two nanometers. The reasons are band folding and phonon confinement. Thermal resistivity is analyzed by the direct non-equilibrium method, and the results are compared to kinetic theory with modified dispersion relations. Thermal resistivity is affected by both surface scattering and dispersion. Moreover, in thin films, the characteristic vibrational frequency decreases, which in standard anharmonic scattering models indicates a longer relaxation time and affects the resistivity. The results indicate that in very thin films, the resistivity becomes highly anisotropic due to differences in surface scattering. In two cases, surface scattering was found to be the most important mechanism for increasing thermal resistivity, while in one case, phonon confinement was found to increase resistivity more than surface scattering.  相似文献   

10.
Colloidal CdSe nanocrystals were synthesized through a solution process. The CdSe nanocrystals coated on Si(1 0 0) wafers were UV-exposed in either an air or argon atmosphere to distinguish the effect of generated ozone from UV-radiation at 365 nm on the removal of surface capping pyridine molecules. The pyridine on the CdSe nanocrystal's surface could be effectively removed by the ozone generated during UV-exposure with an accompanying highly oxidized surface state of the CdSe nanocrystals. For the removal of surface oxides of CdSe nanocrystals, a successive thermal treatment under ultra high vacuum (UHV) was adopted. The optical energy bandgap measured by using UV-vis absorption spectroscopy showed a red shift with treatment with an increase of annealing temperature. The electronic energy structure of UHV-annealed CdSe nanocrystals film was analyzed in situ using X-ray absorption and photoelectron spectroscopy. A great resemblance was found between the values of the optical and electron energy bandgaps of effectively surface-treated CdSe nanocrystals film after UHV-annealing at 400 °C.  相似文献   

11.
以环型腔反馈激光系统为主,综述了非线性激光系统的混沌动力学特性;分析了延迟反馈方法控制混沌的原理和稳定性条件,实现了对多介质非线性激光系统中的混沌控制。同时概述了近年来非线性激光系统中混沌控制的最新进展,诸如空间小微扰法、偶然正比反馈技术等,讨论了混沌控制在提高激光器功率和性能、利用混沌进行秘密通讯和信息处理等方面的应用前景。  相似文献   

12.
非线性环型腔反馈激光系统的动力学特性及其混沌控制   总被引:4,自引:4,他引:4  
 以环型腔反馈激光系统为主,综述了非线性激光系统的混沌动力学特性;分析了延迟反馈方法控制混沌的原理和稳定性条件,实现了对多介质非线性激光系统中的混沌控制。同时概述了近年来非线性激光系统中混沌控制的最新进展,诸如空间小微扰法、偶然正比反馈技术等,讨论了混沌控制在提高激光器功率和性能、利用混沌进行秘密通讯和信息处理等方面的应用前景。  相似文献   

13.
14.
对ITO/F46/Ag热控涂层进行了电子辐照地面模拟试验,探讨了其表面电阻率随电子辐照注量的退化规律,并借助扫描电镜(SEM)对其表面形貌变化进行了研究。通过SEM分析发现,涂层表面发生了严重的损伤效应,有裂纹、碎片和熔蚀现象出现。对涂层的损伤机理进行了分析,并给出了电子辐照ITO/F46/Ag热控涂层的表面碎裂损伤模型。  相似文献   

15.
Flame stabilisation in (highly) preheated mixture is common in several industrial applications. When the reactants are injected separately in the device (usually at high-speed), the flame is lifted so that the fuel and oxidant first mix to give an ignitable mixture. If the temperature of the mixture is adequate, it auto-ignites stabilizing the flame. Here we focus on an academic lifted jet flame and Large Eddy Simulation (LES) is used to capture the flame and auto-ignition dynamics. Comparisons with experimental data show that LES simulates accurately high OH fluctuation levels at the stabilisation location. The vortex dynamics linked to these fluctuations is analyzed and it is found that small scale coherent structures play a vital role in the auto-ignition process. These structures are axial vorticity tubes (braids) and are located relatively far (in the radial direction) from the shear-layer. As a consequence, the lift-off height varies dramatically in time leading to OH fluctuations of the order of the mean OH concentration. This scenario is monitored in the compositional space highlighting the simultaneous evolution of OH, HO 2 and temperature. Further, different strategies for open-loop control of the flame lift-off height are tested. In order to anchor the flame at different positions downstream of the nozzle, the vortex dynamics in the shear-layer was modified. Promoting successively vortex ring and braids, the auto-ignition region was moved significantly. In particular, modified nozzle geometries impacted the formation of braids and ensured a good premixing very close to the nozzle. As a consequence, it was possible to reduce significantly the lift-off height and stabilise the flame few diameters downstream of the nozzle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号