首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国物理 B》2021,30(7):77103-077103
Owing to the interaction between the layers, the twisted bilayer two-dimensional(2 D) materials exhibit numerous unique optical and electronic properties different from the monolayer counterpart, and have attracted tremendous interests in current physical research community. By means of first-principles and tight-binding model calculations, the electronic properties of twisted bilayer biphenylene carbon(BPC) are systematically investigated in this paper. The results indicate that the effect of twist will not only leads to a phase transition from semiconductor to metal, but also an adjustable band gap in BPC(0 me V to 120 me V depending on the twist angle). Moreover, unlike the twisted bilayer graphene(TBG), the flat bands in twisted BPC are no longer restricted by "magic angles", i.e., abnormal flat bands could be appeared as well at several specific large angles in addition to the small angles. The charge density of these flat bands possesses different local modes, indicating that they might be derived from different stacked modes and host different properties. The exotic physical properties presented in this work foreshow twisted BPC a promising material for the application of terahertz and infrared photodetectors and the exploration of strong correlation.  相似文献   

2.
The approximate natural frequencies of oblique membranes have been determined for arbitrary skew angles and side ratios. The response of such a membrane to a forcing function is then obtained in a similar fashion. The lower natural frequencies have been presented for various side ratios of the membrane as a function of the skew angle and vice versa. With increasing skew angle they increase rapidly. For large skew angles the lower natural frequencies are mainly made up by those of the index n = 1. This is especially valid for membranes of large side ratio.  相似文献   

3.
The crystal lamella is well established as a basic structural unit of most semicrystalline polymers. It is also accepted that the chain axis is generally not parallel to the normal to the large flat lamella surfaces, but inclined at some angle θ to it. Due to the random orientation of lamellae in bulk polymers where spherulitic growth predominates, no direct method exists for determining θ. However, the angle has been determined by acid etching bulk samples and then using electron microscopy techniques on fragments. An alternative approach is utilized in this work. The etched fragments, after suitable washing procedures, were sedimented to form an oriented mat. An x-ray diffraction technique was employed in which the regions of high pole density for several crystallographic planes were determined. From these results, the inclination angle was determined to be 40.4°, with a standard deviation of 1.5°. This study represents the first time that an x-ray pole figure technique has been used to determine chain inclination in isotherm-ally crystallized PE.  相似文献   

4.
LED照明光场照度均匀性的研究   总被引:3,自引:0,他引:3  
提出了LED面板与梯形高反射率混光筒相结合的匀光方法。单个LED作为近朗伯体发光,其光能输出较低,且发散角较大,难以直接利用。采用多个LED矩阵排列作为光源,增加了光源的有效发光面积和光通量。梯形混光筒内部各面镀有高反射率膜,使得进入混光筒内部的光线无吸收的反射,最后充分混合输出。调整梯形筒的长度可提高出射面上的光照度均匀性。利用TracePro软件对设计系统进行了模拟分析,结果表明出射面的照度均匀性大于90%,能量利用率大于65%,优于FF双焦距光学系统,并且整个系统结构简单紧凑,易于实现,成本不高。  相似文献   

5.
林奎鑫  李多生  叶寅  江五贵  叶志国  Qinghua Qin  邹伟 《物理学报》2018,67(24):246802-246802
石墨烯是一种准二维蜂窝网状结构新型纳米材料,石墨烯的层数和构型对其性能产生重要影响.固体中准粒子的量子状态由其本身的对称性质所决定,扭转双层石墨烯打破了对称性,引起了强烈的层间耦合作用,改变了扭转双层石墨烯的电子能带、声子色散、形成能垒等物性,产生了独特的性能,如可以连续调控带隙0-250 meV,光电效应的响应度相比于单层石墨烯提高了80倍,因此对扭转双层石墨烯功能化研究有重大意义.本文同时还论述了扭转双层石墨烯向类金刚石转变的理论与实验研究进展,发现扭转双层石墨烯呈现出具有类金刚石结构与性能特征.进一步阐述调控扭转双层石墨烯的扭转角度对其内在性能的影响,揭示这种新型纳米结构在原子层次的行为特征.最后介绍了如何调控制备扭转双层石墨,分析其调控机理,讨论了各种制备工艺的不足与发展趋势.因此本文从扭转双层石墨烯的输运性质、晶体结构转变、制备三个方面展开阐述,并对其在先进电子器件领域的潜在应用进行了展望.  相似文献   

6.
张志东  于慧  李丽 《中国物理》2001,10(7):645-649
Equations are obtained for the surface tilt angle and the twist angle of the director in a twisted nematic liquid crystal cell under a high magnetic field. Under a zero pretilt angle, the two equations reduce to those obtained by Sugimura et al. This fact has also been demonstrated numerically. With finite field strength and nonzero pretilt angle, no saturation transition exists.  相似文献   

7.
The classical phase gradient method applied to the characterization of the angular resonances of an immersed elastic plate, i.e., the angular poles of its reflection coefficient R, was proved to be efficient when their real parts are close to the real zeros of R and their imaginary parts are not too large compared to their real parts. This method consists of plotting the partial reflection coefficient phase derivative with respect to the sine of the incidence angle, considered as real, versus incidence angle. In the vicinity of a resonance, this curve exhibits a Breit-Wigner shape, whose minimum is located at the pole real part and whose amplitude is the inverse of its imaginary part. However, when the imaginary part is large, this method is not sufficiently accurate compared to the exact calculation of the complex angular root. An improvement of this method consists of plotting, in 3D, in the complex angle plane and at a given frequency, the angular phase derivative with respect to the real part of the sine of the incidence angle, considered as complex. When the angular pole is reached, the 3D curve shows a clear-cut transition whose position is easily obtained.  相似文献   

8.
周畅  龚蕊  冯小波 《物理学报》2022,(5):157-165
层间扭转角度是对石墨烯物理性质宽波段可调谐的一个新参量.本文采用2°<θ<15°扭转角度下的连续近似模型,获得了不同扭转角度双层石墨烯分别在有、无电场下的能带结构,通过电子-光子相互作用跃迁速率,计算模拟了范霍夫奇点附近电子带内跃迁和带间跃迁所引起的光学吸收谱.结果表明,在无外加电场时,带间跃迁吸收峰的位置随着扭转角度的增大而发生从红外到可见光波段的蓝移,且吸收系数增大,带内跃迁的光学吸收系数相对于带间跃迁高出2个数量级;而存在外加电场时,两个范霍夫奇点在波矢空间的位置发生偏移,带间跃迁吸收峰发生分裂,且两个分裂的吸收峰位置随着电场强度的不断增大而反向行进.上述研究结果对石墨烯材料在光电器件方面的应用有一定指导作用.  相似文献   

9.
吴江滨  张昕  谭平恒  冯志红  李佳 《物理学报》2013,62(15):157302-157302
本文将第一性原理和紧束缚方法结合起来, 研究了层间不同旋转角度对双层石墨烯的电子能带结构和态密度的影响. 分析发现, 旋转双层石墨烯具有线性的电子能量色散关系, 但其费米速度随着旋转角度的减小而降低. 进一步研究其电子能带结构发现, 不同旋转角度的双层石墨烯在M点可能会出现大小不同的的带隙, 而这些能隙会增强双层石墨烯的拉曼模强度, 并由拉曼光谱实验所证实. 通过对比双层石墨烯的晶体结构和电子态密度, 发现M点处带隙来自于晶体结构中的“类AB堆垛区”. 关键词: 旋转双层石墨烯 第一性原理 紧束缚 电子结构  相似文献   

10.
Following our preceding work, we perform a further study on dynamic evolution of energetic electrons in the outer radiation belt L=4.5 due to a band of whistler-mode chorus frequency distributed over a standard Gaussian spectrum. We solve the 2D bounce-averaged Fokker-Planek equation by allowing incorporation of cross diffusion rates. Numerical results show that whistler-mode chorus can be effective in acceleration of electrons at large pitch angles, and enhance the phase space density for energies of about 1 MeV by a factor of 10^2 or above in about one day, consistent with observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm. Moreover, neglecting cross diffusion often leads to overestimates of the phase space density evolution at large pitch angle by a factor of 5-10 after one day, with larger errors at smaller pitch angle, suggesting that cross diffusion also plays an important role in wave-particle interaction.  相似文献   

11.
The effect of pretilt and twisted angle on twisted nematic liquid crystal filter (TNLCF) is studied theoretically and experimentally in this paper, based on the birefringence and distortion characteristic of twisted nematic liquid crystal, the output performance of TNLCF has been analyzed through numerical simulation firstly, then the corresponding experiment results verify the correctness of the simulation results, which show that the output performance of TNLCF is indeed related to pretilt angle and twisted angle of liquid crystal–with the increasing of the twisted angle the central wavelength of TNLCF will shift to the long wavelength, with the increasing of pretilt angle for the top glass substrate and the decreasing of pretilt angle for the bottom glass substrate the central wavelength of TNLCF will shift to the short wavelength, and if the pretilt angle of the bottom glass substrate is increased and the pretilt angle of the top glass substrate is reduced at the same time in some certain value or otherwise the shift trend of the central wavelength will be not evident. These results will offer an important reference value for the design and application of TNLCF as we believe.  相似文献   

12.
We demonstrate transmission of two wavelength division multiplexed (WDM) bit parallel channels over 100 km of standard single mode fibre link using direct-modulated laser diodes at 10 Gbit/s channel. Step-chirped fibre gratings are used to simultaneously compensate to bit skew and dispersion. Bit skew of approximately 2.5 ns due to the fibre dispersion is completely compensated. Our work show shows that the step-chirped fibre grating technique can eliminate the bit skew for bit parallel WDM systems operating at Gbit rate over hundreds of kilometres of fibre link.  相似文献   

13.
The equilibrium tilt angle profile in a cell limited by two concentric cylinders filled with nematic liquid crystals is determined for strong homeotropic anchoring at the surfaces. The anchoring condition is such that the nematic director is perpendicular to the cylinder axes and a radial nonuniform electric field is applied to investigate a Fréedericksz transition. The distortions induced by the field remain in the plane perpendicular to the cylinder axes, and a threshold field is analytically determined indicating a transition from a pure splay to a splay-bend conformation of the director. It is shown that this transition can be induced by the thickness of the region between the two cylinders, and can be detected even in the absence of an external field. If the maximum value of the tilt angle is assumed as an order parameter, its behavior near to the transition can be used to obtain the critical exponent, which is the same as the one obtained in the mean field approximation. These results are indications that nontrivial consequences may occur when complex fluids are subject to non-planar geometries.  相似文献   

14.
Bi-Yuan Wu 《中国物理 B》2022,31(4):44101-044101
Chiral structures are promising in many applications, such as biological sensing and analytical chemistry, and have been extensively explored. In this paper, we theoretically investigate the chiral response of twisted bilayer α-MoO3. Firstly, the analytical formula for the transmissivity is derived when the structure is illuminated with circularly polarized plane waves. Furthermore, the results demonstrate that the twisted bilayer α-MoO3 can excite the strong chirality with the maximum circular dichroism (CD) of 0.89. In this case, the chirality is due to the simultaneous breaking the rotational symmetry and mirror symmetry, which originates from the relative rotation of two α-MoO3 layers. To better understand the physical mechanism, the polarization conversion between the left-hand circular polarization (LCP) and right-hand circular polarization (RCP) waves is discussed as well. Moreover, it is found that the structure can maintain the strong chirality (CD> 0.8) when the twisted angle varies from 69° to 80°, which effectively reduces the strictness in the requirement for rotation angle. In addition, the CD can be larger than 0.85 when the incidence angle of circularly polarized plane wave is less than 40°, implying that the chirality is robust against the angle of incidence. Our work not only provides an insight into chirality induced by the twisted bilayer α-MoO3, but also looks forward to applications in biological sensing.  相似文献   

15.
王敏华  谢月娥  陈元平 《中国物理 B》2017,26(11):116503-116503
Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge,thermal transports in twisted graphene have been investigated little to date. Here, we study perpendicular and parallel transports in twisted few-layer graphene(T-FLG). It is found that perpendicular and parallel transports are both sensitive to the rotation angle θ between layers. When θ increases from 0° to 60°, perpendicular thermal conductivity κ_(||) first decreases and then increases, and the transition angle is θ = 30°. For the parallel transport, the relation between thermal conductivity κand θ is complicated, because intra-layer thermal transport is more sensitive to the edge of layer than their stacking forms. However, the dependence of interlayer scattering on θ is similar to that of κ⊥. In addition, the effect of layer number on the thermal transport is discussed. Our results may provide references for designing the devices of thermal insulation and thermal management based on graphene.  相似文献   

16.
For the supercooled salt melt 0.4 Ca(NO3)2–0.6 KNO3 the photoacoustic amplitude and phase shift are measured in the glass transition region. The transition temperature is defined by the maximum in the phase angle. It is shifted to lower temperatures for lower frequencies. A frequency-dependent specific heat can be calculated from the data in the dispersion region. The frequency dependence of the transition temperature can be fitted by a power law with exponent =8.8±1.This work is part of a Ph. D. thesis at the Technische Universität München  相似文献   

17.
The deflagration-to-detonation transition in hydrogen–air mixtures that fill spiral channels has been studied. A spiral channel has been produced in a cylindrical detonation tube with a twisted ribbon inside. The gas mixture has been ignited by means of a spark gap switch. The predetonation distance versus the twisted ribbon configuration and molar ratio between the gas mixture components has been determined. A pulling force exerted by the detonation tube after a single event of hydrogen–air mixture burnout has been found for four configurations of the twisted ribbon. Conditions under which the use of a spiral tube can be more effective (increase the pulling force) have been formulated.  相似文献   

18.
Twisted bilayer graphene, in which interlayer interaction plays a critical role in this coupled system, is characterized for its angle‐dependent electronic and optical properties. Here, we present a systematic Raman study of single‐crystal twisted bilayer graphene grains, with the spectra of each bilayer graphene precisely correlated to its twist angle using combined transmission electron microscopic technique. Van Hove singularities develop as a result of band rehybridization at the crossing Dirac cones of the two layers, giving rise to a critical twist angle that determines the energy separation between the saddle points in the band structure and the resonance Raman spectra accordingly. The 2D mode becomes sensitive to the twist angle, showing the angle‐dependent position, peak width, and intensity. Our results interpreted in the framework of angle‐dependent double resonance scattering provide an important experimental perspective in understanding the coupled bilayer graphene system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The overall fall-back angle 50 of thin uniaxial ferromagnetic films was calculated including the effect of the magnetization ripple and the skew. Both, ripple and skew angle were assumed to show a Gaussian distribution with different standard deviations. Ripple and skew are superimposed in a nonlinear manner to give the fall-back angle of the entire film. By direct measurements of the ripple fall-back angle, 50 0 , for very small spots of the film, of the fall-back angle, 50, of the entire film, and of the distribution and standard deviation of the skew, the calculation could be tested, which gave good agreement between experiment and theory. As long as the skew is unknown the fall-back angle alone is not the best measure for the quality of an uniaxial film.The authors are indebted to the Deutsche Forschungsgemeinschaft which supported this work by parts of the equipment. They also thank Dr. K. Kempter for providing his results.  相似文献   

20.
A simple solid-on-solid model, proposed earlier to describe overlayer-induced faceting of bcc(1 1 1) surface, is applied to faceting of curved surfaces covered by an adsorbate monolayer. Surfaces studied in this paper are formed by a part of sphere around the [1 1 1] pole. Results of Monte Carlo simulations show that the morphology of a faceted surface depends on the annealing temperature. At an initial stage the surface around the [1 1 1] pole consists of 3-sided pyramids and step-like facets, then step-like facets dominate and their number decreases with temperature, finally a single big pyramid is formed. It is shown that there is a reversible phase transition at which a faceted surface transforms to an almost spherical one. It is found that the temperature of this phase transition is an increasing function of the surface curvature. Simulation results show that measurements of high temperature properties performed directly and after fast cooling down to a low temperature lead to different results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号