首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoelectron spectroscopy of isolated atoms and molecules using single-order high-harmonics of Ti:Sapphire laser pulses (800 nm, 12 fs/30 fs) is demonstrated. Dielectric multilayer mirrors, SiC/Mg and Mo/Si, are used to isolate the 27th (42 eV) and 59th (91 eV) order harmonics, respectively. The obtained harmonics are characterized by valence and inner-shell photoelectron spectroscopy of Xe. The applications to two-color two-photon ionization of He and pump-probe spectroscopy of ultrafast photodissociation of Br2, Br2(C1Πu)  Br(2P3/2) + Br(2P3/2), are presented.  相似文献   

2.
《Solid State Ionics》2006,177(33-34):2889-2896
Chromium-containing NASICON-related phosphates of the type Na(1+x)CrxM(2−x)P3O12) (M = Ti, Hf, Zr) have been synthesised by solid state reaction and structurally characterised by Rietveld refinement of the powder X-ray diffraction data. Materials of composition A(1+x)/2CrxZr(2−x)P3O12 (A = Cd, Ca, Sr), have also been prepared and characterised. The crystal structure of Na(1+x)CrxM(2−x)P3O12 corresponds to R-3c symmetry for x values ranging from 0.15 to 2.00, whereas compounds of composition A(1+x)/2CrxZr(2−x)P3O12 corresponding to R-3c are obtained when x  1.00 for Sr2+ and Ca2+, and x  1.50 for Cd2+. The polarizing effect of the two different metal ions A and M on the phosphorus atom and the P–O bond was studied by both 31P MAS NMR and infrared spectroscopy and shows that the electron density on the phosphorus, and thus the strength of the P–O bonds, are affected by both the interstitial (A) and the structural (M) metal ions.  相似文献   

3.
The oxygen tracer diffusion coefficient (D?) has been measured for 9 mol% scandia 2 mol% yttria co-doped zirconia solid solution, (Y2O3)2(Sc2O3)9(ZrO2)89, using isotopic exchange and line scanning by Secondary Ion Mass Spectrometry, as a function of temperature. The values of the tracer diffusion coefficient are in the range of 10? 8–10? 7 cm2 s? 1 and the Arrhenius activation energy was calculated to be 0.9 eV; both valid in the temperature range of 600–900 °C. Electrical conductivity measurements were carried out using 2-probe and 4-probe AC impedance spectroscopy, and a 4-point DC method at various temperatures. There is a good agreement between the measured tracer diffusion coefficients (D?, Ea = 0.9 eV) and the diffusion coefficients calculated from the DC total conductivity data (Dσ, Ea = 1.0 eV), the latter calculated using the Nernst–Einstein relationship.  相似文献   

4.
Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of ~30–90 nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-Å electron probe. Positioning the electron probe upon transmission impact and at aloof setup with respect to the nanomaterials, we explored two types of surface modes intrinsic to GaN, surface exciton polaritons at ~8.3 eV (~150 nm) and surface guided modes at 3.88 eV (~320 nm), which are in visible/ultra-violet spectral regime above GaN bandgap of ~3.3 eV (~375 nm) and difficult to access by conventional optical spectroscopies. The explorations of these electromagnetic resonances might expand the current technical interests in GaN nanomaterials from the visible/UV range below ~3.5 eV to the spectral regime further beyond.  相似文献   

5.
《Current Applied Physics》2009,9(5):1160-1164
Multi-metallic Prussian blue compound Ni1.125Co0.375[Fe(CN)6] · 6.8H2O has been synthesized. The Mössbauer spectroscopy at room temperature and IR spectra study revealed that the metal ions are bonded through cyanide ligand and the presence of low spin FeIII(S = 1/2) and high spin FeIII(S = 5/2) ions, as showed in these structure: FeIII(S = 1/2)-CN-(CoII/NiII)(96%) and FeIII(S = 5/2)-NC-(CoII/NiII) (4%). The Curie constant of C = 3.00 cm3 K mol−1 and Weiss paramagnetic Curie temperature of θ = 16.43 K were observed in fitting according to Curie–Weiss law. These results indicate that there existed a ferromagnetic exchange interaction in the complexes. The observed value of coercive field (Hc) and remanent magnetization (Mr) at 4 K for the compound are 497 Oe and 1.03 . The presence of spin-glass behaviours in the compound is ascribed mainly to domain mobility or domain growth under different cooling conditions.  相似文献   

6.
Polycrystalline samples of M3(BO3)F3 (M=Fe, Co, Ni), isostructural with nocerite Mg3(BO3)(OH,F)3, have been prepared in supercritical hydrothermal conditions. These compounds represent with boracites, M3B7O13F (M=Mg, Cr, Mn, Fe, Co, Zn), the only transition metal fluoride borates known to date. Co3(BO3)F3 and Ni3(BO3)F3 are antiferromagnetic with TN=17(2) and 40(2) K, respectively. Spin-flop transitions at BC1=4.0 T and BC2=7.5 T occur at 1.6 K in Co3(BO3)F3, while a parasitic ferromagnetism (0.02 μB/Ni2+ at 1.6 K) appears below TN in Ni3(BO3)F3. The magnetic structures consist of three spin sub-lattices of double rutile-type ferromagnetic chains.  相似文献   

7.
Tm2O3 crystalline films have been deposited on Si (0 0 1) by molecular beam epitaxy (MBE). Band alignments of Tm2O3/Si gate stacks were studied by X-ray photoelectron spectroscopy (XPS). According to XPS measurements, it can be noted that a valence-band offset of ?3.1 ± 0.1 eV and a conduction-band offset of 2.3 ± 0.3 eV for the Tm2O3/Si heterojunction have been obtained. Based on analysis from O 1s energy-loss spectrum, the energy gap of Tm2O3 is determined to be 6.5 ± 0.3 eV. A relatively thicker interfacial SiOx layer was observed for the as-annealed samples. However, no apparent change in band alignment has been observed for Tm2O3/Si heterojunction with the formation of interface layer, which has been discussed in detail.  相似文献   

8.
《Solid State Ionics》2006,177(13-14):1117-1122
We report a comparative study of transport and thermodynamic properties of single-crystal and polycrystalline samples of the ionic salt CsH5(PO4)2 possessing a peculiar three-dimensional hydrogen-bond network. The observed potential of electrolyte decomposition ≈ 1.3 V indicates that the main charge carriers in this salt are protons. However, in spite of the high proton concentration, the conductivity appears to be rather low with a high apparent activation energy Ea  2 eV, implying that protons are strongly bound. The transport anisotropy though is not large, correlates with the crystal structure: the highest conductivity is found in the [001] direction (σ130 °C 5.6 × 10 6 S cm 1) while the minimal conductivity is in the [100] direction (σ130 °C 10 −6 S cm 1). The conductivity of polycrystalline samples appears to exceed the bulk one by 1–3 orders of magnitude with a concomitant decrease of the activation energy (Ea  1.05 eV), which indicates that a pseudo-liquid layer with a high proton mobility is formed at the surface of grains. Infrared and Raman spectroscopy used to study the dynamics of the hydrogen-bond system in single-crystal and polycrystalline samples have confirmed the formation of such a modified surface layer in the latter. However, no bulk phase transition into the superionic disordered phase is observed in CsH5(PO4)2 up to the melting point Tmelt 151.6 °C, in contrast to its closest relative compound CsH2PO4.  相似文献   

9.
Density functional theory calculations have been performed to investigate the structural and electronic properties of bulk Co2C and the stability of low index Co2C surfaces. We found that the formation of Co2C is exothermic with the formation energy of ? 0.81 eV/Co2C with respect to Co under the presence of syngas (mixture of CO and H2). While formed Co2C can be decomposed further to metal Co and graphite carbon with modest energy gain of 0.37 eV/Co2C. This suggests that Co2C is only metastable in Fischer–Tropsch synthesis, which agrees well with experimental findings. The density of states (DOSs) reveals that the Co2C is paramagnetic and strong metallic-like. The difference of charge density analysis indicates that the bond of Co2C is of the mixtures of metallic, covalent, and ionic properties. A variety of low index Co2C surfaces with different terminations are studied. We find that the surface energy of low index stoichiometric Co2C highly relies on the surface area, the number of coordination of surface atoms and the surface dipole, with the decreased stability order of (101) > (011) > (010) > (110) > (100) > (001) = (111). Our results indicate that under Co-poor condition, the formation of non ? stoichiometric surface (011) and (111) without terminated cobalt is energetically more favorable, while under Co-rich condition the formation of non ? stoichiometric (111) surface with cobalt overlayer are preferential.  相似文献   

10.
Karl Jacobi  Yuemin Wang 《Surface science》2009,603(10-12):1600-1604
The interaction of NO with the O-rich RuO2(1 1 0) surface, exposing coordinatively unsaturated O-bridge, O-cus, and Ru-cus atoms, was studied at 300 K by thermal desorption spectroscopy (TDS) and high-resolution electron energy-loss spectroscopy (HREELS). The conclusions are validated by isotope substitution experiments with 18O. During exposure to NO an O···N–O surface group (NO2-cus) is formed with O-cus. Additionally, a smaller number of empty Ru-cus sites are filled by NO-cus. If one warms the sample to 400 K, NO2-cus does not desorb but decomposes into O and NO again, the latter being either released into gas phase or adsorbed as NO-cus. With O-bridge such a surface group is not stable at 300 K. Our experiments further prove that O-cus is more reactive than O-bridge.  相似文献   

11.
The new apatite–silicate phosphor doped with Eu ions in Ba10(PO4)4(SiO4)2 matrix was synthesized through solid-state reaction. It was found that the as-synthesized phosphor displayed apparent mixture of band and line emission peaks giving rise to pseudo white light. The narrow emission bands peaking at 410 nm can be assigned to the 4f65d→4f7(8S7/2) transition of Eu2+ ions, and the other band at 507 nm is ascribed to anomalous fluorescent emission. One group of line emission peaking at 595 nm and 613 m were due to the 5D07F1 and 5D07F2 transition of Eu3+ ions. The occurrence of photostimulated luminescence and discrete emission lines in violet (410 nm), green (507 nm) and red (595 nm and 613 nm) colors indicate that this material has potential application in fields of white-light-emitting.  相似文献   

12.
In the work, it is shown that taking into account the ratio of spatial scales characteristic of martensite crystal nucleation in the elastic field of an individual dislocation localized in a grain of diameter D makes it possible (i) to estimate the critical grain size Dc (~1 μm) characteristic of the γ→α transformation at a martensite starting temperature Ms ~ 100 K from the requirements that threshold strain arises in the elastic region, (ii) to consistently describe the D dependence of Ms with Ms(Dc) = 0 from analysis of the phase free energy difference, (iii) to express Dc through macroparameters and interpret the limiting case Ms∞→0, Dc→∞ (Dc ~ (Ms∞)?1 with Ms∞  Ms (∞)), and (iv) to more exactly specify the qualitative dynamic model of the effect of dislocation grain boundaries on the onset of initial excitation.  相似文献   

13.
The results on the electronic structure of the unoccupied electronic states of the polycrystalline SnO2 in the energy range from 5 eV to 25 eV above the Fermi level are presented. The modification of the electronic structure and of the surface potential upon deposition of the ultrathin films of copper phthalocyanine (CuPc) and of perylene tetracarboxylic acid dianhydride (PTCDA) film onto the SnO2 surface were studied using the very low energy electron diffraction (VLEED) method and the total current spectroscopy (TCS) measurement scheme. A substantial attenuation of the TCS signal coming from the SnO2 surface was observed upon formation of a 1.5–2 nm thick organic deposit layer while no new spectral features from the deposit were distinguishable. It was observed that the electronic structure typical for the organic films was formed within the organic deposit thickness range from 2 nm to 7 nm. The interfacial charge transfer was characterized by the formation of the polarization layer up to 5 nm thick in the organic films. The PTCDA deposition on SnO2 was accompanied by the negative charge transfer onto the organic layer and to the 0.65 eV increase the surface work function. At the CuPc/SnO2 interface, the negative charge was transferred to the SnO2 surface and the overall surface work function decreased by 0.15 eV.  相似文献   

14.
Sr(Zr0.84Y0.16)0.91O3 ? δ (SZY) and Ba(Zr0.84Y0.16)0.96O3 ? δ (BZY) protonic conductor coatings were co-sputter deposited from metallic targets in argon–oxygen reactive gas mixtures. The chemical and structural features were investigated by energy dispersive X-ray spectroscopy and X-ray diffraction, and their morphology was assessed by scanning electron microscopy of the surface and of brittle fracture cross sections. The electrical properties of the coating were determined by complex impedance spectroscopy as a function of temperature in air. Relationships are established between the electrical properties and the morphology of the coatings. The SZY as deposited coatings is amorphous and crystallises under the convenient perovskite structure after annealing treatment at 873 K under air. The BZY as deposited coatings is crystallised at 523 K in situ under perovskite structure and a further annealing treatment increases the grain size. Conductivities and activation energies of crystallised coatings were 3.1 · 10? 5 S cm? 1/2 · 10? 5 S cm? 1 and 0.65 eV/0.71 eV after stabilization at 773 K for strontium and barium zirconate, respectively.  相似文献   

15.
Dye sensitized solar cells (DSSCs) were fabricated based on coumarin NKX-2700 dye sensitized bi-layer photoanode and quasi-solid state electrolyte sandwiched together with cobalt sulfide coated counter electrode. A novel bi-layer photoanode has been prepared using composite mixtures of 90 wt.% TiO2 nanoparticles + 10 wt.% TiO2 nanowires (TNPWs) as active layer and Nb2O5 is coated on the active layer, which acts as scattering layer. Hafnium oxide (HfO2) was applied over the TNPWs/Nb2O5 photoanode film, as a blocking layer. TiO2 nanoparticles (TNPs), TiO2 nanowires (TNWs) and TNPWs/Nb2O5 were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The sensitizing organic dye coumarin NKX-2700 displayed maximum absorption wavelength (λmax) at 525 nm, which could be observed from the UV–vis spectrum. DSSC-1 fabricated with composite bi-layer photoanode revealed enhanced photo-current efficiency (PCE) as compared to other DSSCs and illustrated photovoltaic parameters; short-circuit current JSC = 18 mA/cm2, open circuit voltage (VOC) = 700 mV, fill factor (FF) = 64% and PCE (η) = 8.06%. The electron transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra (EIS) and the results illustrated that the DSSC-1 showed the lowest charge transport resistance (Rtr) and the longest electron lifetime (τeff). Therefore, in the present investigation, it could be concluded that the novel bi-layer photoanode with blocking layer increased the short circuit current, electron transport and suppressed the recombination of charge carriers at the photoanode/dye/electrolyte interface in DSSC-1.  相似文献   

16.
We reported the role of A-site modification on the structural, ferroelectric, optical and electrical field-induced strain properties of Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 lead-free piezoceramics. The Li+ ions with concentration from 0 to 5 mol% were used to substitute at A-site. There was no phase transition when Li+ ions was added up to 5 mol%. The electric field-induced strain (Smax/Emax) values increased from 600 to 643 pm/V for 2 mol% Li+-added which results from distortion both rhombohedral and tetragonal phase structures. The band gap reduced from 2.88 to 2.68 eV and the saturation polarization decreased from 46.2 to 26.1 μC/cm2 when Li+ ions concentration increased from 0 to 5 mol% respectively. We expect that this work could be helpful for further understanding the role of A-site dopants in comparison with B-site modification in lead-free Bi0.5(Na,K)0.5TiO3-based ceramics.  相似文献   

17.
《Solid State Ionics》2006,177(17-18):1501-1507
High-quality crystalline MSn2 (M = Cr and Co) thin films have been successfully fabricated by reactive pulsed laser deposition. The physical and electrochemical properties of the as-deposited thin films have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), galvanostatic cycling and cyclic voltammetry (CV). XRD measurement indicates that the as-deposited thin films prepared at 400 °C consisted mainly of MSn2 (M = Cr and Co) with a small quantity of metal tin. The specific reversible capacities of CrSn2 and CoSn2 thin film electrodes are found to be 467 mA h/g and 465 mA h/g, respectively. A mechanism involving an irreversible decomposition of MSn2 (M = Cr and Co) and a classical alloying process of Sn is proposed. MSn2 (M = Cr and Co) as the starting anode materials for conversion to the Li–Sn alloy can improve its electrochemical performance with high reversible capacity and good stable cycle.  相似文献   

18.
《Solid State Ionics》2006,177(26-32):2407-2411
Electrical conduction of Sr-doped LaP3O9 ([Sr]/{[La] + [Sr]} = 2–10 mol%) was investigated under 0.4–5 kPa of p(H2O) and 0.01–100 kPa of p(O2) or 0.3–3 kPa of p(H2) at 573–973 K. Sr-doped LaP3O9 showed apparent H/D isotope effect on conductivity regardless of the Sr-doping level under both H2O/O2 oxidizing and H2/H2O reducing conditions at investigated temperatures. Conductivities of the material were almost independent of p(O2) and p(H2O). These results demonstrated that the Sr-doped LaP3O9 exhibited protonic conduction under wide ranges of p(O2), p(H2O) and temperature. The conductivity of the Sr-doped LaP3O9 increased with increasing Sr concentration up to its solubility limit, ca. 3 mol%, while the further Sr-doping slightly degraded the conductivity. These indicate that Sr2+ substitution for La3+ leads to proton dissolution into the material and induced protonic conduction. Conductivities of the 3 mol% Sr-doped sample were 2 × 10- 6–5 × 10 4 S cm 1 at 573–973 K.  相似文献   

19.
The interaction between Au nano-particles and oxide supports is recently discussed in terms of the catalytic activities. This paper reports the electronic charge transfer between Au nano-particles and TiO2-terminated SrTiO3(0 0 1) substrate, which is compared with that for stoichiometric(S)-, pseudo-stoichiometric(S1)- and reduced(R)-TiO2(1 1 0) supports. We observed the photoelectron spectra of Au 4f, O 2s, Ti 3p, and Sr 4p lines and also measured the work functions for Au/oxides supports using synchrotron-radiation light. As the results, all the O 2s, Ti 3p, and Sr 4p lines for Au/SrTiO3(0 0 1) show lower binding energy shifts in a quite same manner and abrupt increase in the work function is seen in an initial stage. This clearly evidences an electronic charge transfer from the substrate to Au probably due to a much larger work function of Au than SrTiO3(0 0 1), which leads to an upward band bending (0.3 eV) just like a Schottky contact. Electronic charge transfers also take place at Au/S- and Au/S1-TiO2(1 1 0) and Au/R-TiO2(1 1 0) interfaces, where electrons are transferred from Au to S- and S1-TiO2 and from R-TiO2 to Au, as predicted by ab initio calculations.  相似文献   

20.
Continuous-time photoelectron spectroscopy (PES) and continuous-time core-level photon-stimulated desorption (PSD) spectroscopy were used to study the monochromatic soft X-ray-induced reactions of CCl2F2 molecules adsorbed on Si(111)-7 × 7 at 30 K (CCl2F2 dose = 2.0 × 1014 molecules/cm2, ~ 0.75 monolayer) near the Si(2p) core level. Evolution of adsorbed CCl2F2 molecules was monitored by using continuous-time photoelectron spectroscopy at two photon energies of 98 and 120 eV to deduce the photolysis cross section as a function of energy. It was found that the photolysis cross sections for 98 and 120 eV photons are ~1.4 × 10? 18 and ~ 8.0 × 10? 18 cm2, respectively. Sequential F+ PSD spectra obtained by using continuous-time core-level photon-stimulated desorption spectroscopy in the photon energy range of 98–110 eV show the variation of their shapes with photon exposure and depict the formation of surface SiF species. The dissociation of CCl2F2 molecules adsorbed on Si(111)-7 × 7, irradiated by monochromatic soft X-ray in the photon energy range of 98–110 eV, is mainly due to dissociative electron attachment and indirect dipolar dissociation induced by photoelectrons emitted from the silicon surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号