首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution three-dimensional space charge cartographies obtained on 50 μm PTFE samples by using FLIMM technique are presented in this article. Samples were irradiated by a 30 keV electron beam. Charges were injected according to the grid pattern put on the sample during irradiation. A new measurement strategy associated with a new set-up leads to an improvement in measurements accuracy and precision. With this new strategy, measurements were performed rapidly, at a chosen depth and with a low lateral resolution in order to map the space charge profile in the whole sample and to choose a study area. After selecting an interesting area, space charge cartographies were carried out with a very high lateral resolution of about 1 μm. The irradiated zones according to the grid pattern were well reconstructed and the injection depth did not exceed 4 μm.  相似文献   

2.
We developed a very sensitive high-frequency carrier-type thin film sensor with a sub-pT resolution using a transmission line. The sensor element consists of Cu conductor with a meander pattern (20 mm in length, 0.8 mm in width, and 18 μm in thickness), a ground plane, and amorphous CoNbZr film (4 μm in thickness). The amplitude modulation technique was employed to enhance the magnetic field resolution for measurement of the high-frequency field (499 kHz), a resolution of 7.10×10?13 T/Hz1/2 being achieved, when we applied an AC magnetic field at 499 kHz. The phase detection technique was applied for measurement of the low frequency field (around 1 Hz). A small phase change was detected using a dual mixer time difference method. A high phase change of 130°/Oe was observed. A magnetic field resolution of 1.35×10?12 T/Hz1/2 was obtained when a small AC field at 1 Hz was applied. We applied the sensor for magnetocardiogram (MCG) measurement using the phase detection technique. We succeeded in measuring the MCG signal including typical QRS and T waves, and compared the MCG with a simultaneously obtained conventional electrocardiogram (ECG) signal.  相似文献   

3.
Antireflection coatings have critical importance in thermal imaging system working in MWIR region (3–5 μm) since optics of high refractive index materials are used. Germanium (Ge) and Silicon (Si) optics are used extensively in the MWIR thermal systems. In this paper a study has been carried out on the design and fabrication of multi-substrate antireflection coating effective for Germanium and Silicon optics in MWIR (3.6–4.9 μm) region. The wave band 3.6–4.9 μm is chosen for the reported work because detector system used in MWIR region has a band selection filter effective in the same wavelength region and atmospheric transmission window in MWIR region is effective in 3–5 μm spectral band. Comprehensive search method was used to design the multilayer stack on the substrate. The coating materials used in the design were Germanium (Ge), Hafnium oxide (HfO2) and Y-Ba-Fluoride (IR-F625). The fabrication of coating was made in a coating plant fitted with Cryo pump system and residual gas analyzer (RGA). The evaporation was carried out at high vacuum (2–6 × 10?6 mbar) with the help of electron beam gun system and layer thicknesses were measured with crystal monitor. The result achieved for the antireflection coating was 98.5% average transmission in 3.6–4.9 μm band for Germanium and Silicon optics. This work will be helpful in reducing the plant operation time, material and power consumption, as two different kinds of optics are simultaneously coated in a single coating cycle.  相似文献   

4.
Antireflection coating on silicon optics have crucial importance in thermal device working in 3.6–4.9 μm wavelength region. When the thermal device is used in marine environment, the optics face harsh saline weather condition compared to normal field environment. This deteriorates coated optics and to improve mechanical strength of the coating, a nanotop layer on the antireflection coating has been developed. In this paper a study has been carried out to improve marine environment compatibility by employing a nanolayer on the top of antireflection coating on silicon optics. Optimac synthesis method was used to design the multilayer stack on the substrate with germanium and IR-F625 as high/low refractive index respectively and the layer number was restricted to four layers. The top nanolayer was 60 ± 2 nm thick hafnium dioxide layer developed with ion assisted deposition (End–Hall) on the optics during coating process. The deposition of multilayer coating was carried out inside the coating plant fitted with cryo pump and residual gas analyzer. The evaporation was carried out at high vacuum (2–6 × 10−6 mbar) using electron beam gun and layer thicknesses were measured with crystal monitor. The average transmission achieved was 97% in the spectral band of 3.6–4.9 μm with a hardness of 9.7 GPa on the coated optics.  相似文献   

5.
The three-dimensional real-space observation of photonic nanojet in different microspheres illuminated by a laser is reported. The finite-difference time-domain technique is used to perform the three-dimensional numerical simulation for the dielectric microspheres. The key parameters of photonic nanojet are measured by using a scanning optical microscope system. We reconstruct the three-dimensional real-space photonic nanojets from the collected stack of scanning images for polystyrene microspheres of 3 μm, 5 μm, and 8 μm diameters deposited on a glass substrate. Experimental results are compared to calculations and are found in good agreement with simulation results. The full width at half-maximum of the nanojet is 331 nm for a 3 μm microsphere at an incident wavelength of 633 nm. Our investigations show that photonic nanojets can be efficiently imaged by a microsphere and straightforwardly extended to rapidly distinguish the nano-objects in the far-field optical system.  相似文献   

6.
We are developing resonator-QWIPs for narrowband and broadband long wavelength infrared detection. Detector pixels with 25 μm and 30 μm pitches were hybridized to fanout circuits and readout integrated electronics for radiometric measurements. With a low to moderate doping of 0.2–0.5 × 1018 cm−3 and a thin active layer thickness of 0.6–1.3 μm, we achieved a quantum efficiency between 25 and 37% and a conversion efficiency between of 15 and 20%. The temperature at which photocurrent equals dark current is about 65 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 20 mK at 2 ms integration time and 60 K operating temperature. This good performance confirms the advantages of the resonator-QWIP approach.  相似文献   

7.
In-plane magnetic anisotropy of 40-μm-long (Ga,Mn)As wires with different widths (0.4, 1.0, and 20 μm) has been investigated between 5 and 75 K by measuring anisotropic magneto-resistance (AMR). The wires show in-plane 〈1 0 0〉 cubic and [−1 1 0] uniaxial anisotropies, and an additional lithography-induced anisotropy along the wire direction in narrow wires with width of 0.4 and 1.0 μm. We derive the temperature dependence of the cubic, uniaxial, and lithography-induced anisotropy constants from the results of AMR, and find that a sizable anisotropy can be provided by lithographic means, which allows us to control and detect the magnetization reversal process by choosing the direction of the external magnetic fields.  相似文献   

8.
In the remarkably short span of 2 years, longwave infrared focal plane arrays (FPAs) of Type-II InAs/GaSb strained layer superlattice (SLS) photodiodes have advanced from 320 × 256 format to 1024 × 1024 format while simultaneously shrinking the pitch from 30 μm to 18 μm. Despite a dark current that is presently higher than state-of-the-art mercury cadmium telluride photodiodes with the same ∼10 μm cutoff wavelength, the high pixel operability and high (∼50%) quantum efficiency of SLS FPAs enable excellent imagery with temporal noise equivalent temperature difference better than 30 mK with F/4 optics, integration time less than 1 ms, and operating temperature of 77 K or colder. We present current FPA performance of this promising sensor technology.  相似文献   

9.
A wavelength conversion based on high nonlinear microstructured fiber is demonstrated. Core diameter and pitch of the microstructured fiber used in this wavelength conversion method are 2.05 μm and 5.0 μm, respectively. Diameter of the air-holes in the fiber cladding is 4.50 μm, the nonlinear coefficient of the microstructured fiber is 112.2 W?1 km?1 and it is 60 times higher than that of a conventional dispersion-shift fiber, the length of the fiber is 100 m. Four-wave-mixing effect is improved in the high nonlinear microstructure fiber and then the efficiency of the wavelength conversion is improved also. 10 Gbps Not-Return-to-Zero (NRZ) modulation format and 10 Gbps Return-to-Zero (RZ) modulation format are converted effectively by our method. This study can provide a new alternative solution for high effective all-light wavelength conversion in high speed optical communication systems with multi-wavelengths and all-light optical networks.  相似文献   

10.
The chromatic confocal microscopy is an effective method for displacement measurement. However, with relatively low detection efficiency, chromatic confocal systems from previous studies suffer from either a limited measuring range or an unsatisfying resolution. In this paper, a novel chromatic confocal system is proposed based on optical fiber with large diameter that is specifically chosen to allow more light to be detected, thus greatly improving the detection efficiency of the system. To accurately locate the peak wavelength of the recorded spectrum, four data processing methods are proposed and compared, within which the Gaussian fitting model is considered best for the system. A series of experiments are done to verify the feasibility, resolution and stability of the system. An applicable measuring range of 600 μm is discovered with a highly linear range of 400 μm. The system has a high resolution close to 0.10 μm with satisfying stability shown by a long-term displacement standard deviation of 0.16 μm.  相似文献   

11.
To improve the light extraction efficiency of GaN-based light-emitting diodes (LEDs), periodic semisphere patterns with 3.5 μm width, 1.2 μm height, and 0.8 μm spacing were formed on sapphire substrate by dry etching using BCl3/Cl2 gas chemistry. The indium tin oxide (ITO) transparent conductive layer was patterned by wet etching to reduce the total internal reflection existing along between p-GaN, ITO, and air. At 350 mA injection current, the high power LED by integrating patterned sapphire substrate with patterned ITO technology exhibited a 36.9% higher light output power than the conventional LEDs.  相似文献   

12.
We propose a compact polarization splitter based on dual-elliptical-core photonic crystal fiber. Two elliptical cores are introduced to increase the difference of effective index between x-polarized and y-polarized mode and three elliptical modulation air holes are used to control the power transfer between the two cores. By optimizing the structure parameters, the length of the polarization splitter is distinctly shortened. Numerical results demonstrate that the compact splitter has the length of 775 μm and up to 50 dB extinction ratio at the central wavelength of 1.55 μm. The corresponding bandwidth of 32 nm could be achieved from the wavelength of 1.534–1.566 μm with the extinction ratio over 20 dB  相似文献   

13.
Vanadium dioxide has excellent phase transition characteristic. Before or after phase transition, its optical, electrical, magnetic characteristic hangs hugely. It has a wide application prospect in many areas. Now, the light which can make vanadium dioxide come to pass photoinduced phase transition range from soft X-ray to medium infrared light (6.9 μm, 180 meV). However, whether 10.6 μm (117 meV) long wave infrared light can make vanadium dioxide generate photoinduced phase transition has been not studied. In this paper, we researched the response characteristic of vanadium dioxide excited by 10.6 μm infrared light. We prepared the vanadium dioxide and test the changes of vanadium dioxide thin film’s transmittance to 632.8 nm infrared light when the thin film is irradiate by CO2 laser. We also test the resistivity of vanadium dioxide. Excluding the effect of thermal induced phase transition, we find that the transmittance of vanadium dioxide thin film to 632.8 nm light and resistivity both changes when irradiating by 10.6 μm laser. This indicates that 10.6 μm infrared light can make the vanadium dioxide come to pass photoinduced phase transition. The finding makes vanadium has a potential application in recording the long-wave infrared hologram and making infrared detector with high resolution.  相似文献   

14.
Femtosecond lasers together with high resolution optics have given us the ability to achieve submicron ablation spots which can play an important role in specific micromachining applications. Light emitted from the plasma at the sample surface created by a focused femtosecond laser pulse can also be used in laser induced breakdown spectroscopy (LIBS) and allows us to characterize the chemical composition of the target surface with micron-level lateral resolution. The spatial resolution using LIBS has often been defined by measuring the FWHM of the crater size. In this report, we study the application of femtosecond 266 nm laser pulses with very low energies of 10׳s of nanojoules. We have investigated spatial resolution using the detection of thin strips of chromium on silicon substrates and compared the actual width of the chromium versus the experimentally obtained width using LIBS detection. The variation of signal levels for low pulse energies is investigated on chromium surfaces. A spatial resolution of ~1 μm was obtained for detection of chromium from the emission.  相似文献   

15.
The goal of this study is to achieve absolute line intensities for the strong 5.7 and 3.6 μm bands of formaldehyde and to generate, for both spectral regions, an accurate list of line positions and intensities. Both bands are now used for the infrared measurements of this molecule in the atmosphere. However, in the common access spectroscopic databases there exists, up to now, no line parameters for the 5.7 μm region, while, at 3.6 μm, the quality of the line parameters is quite unsatisfactory. High-resolution Fourier transform spectra were recorded for the whole 1600–3200 cm?1 spectral range and for different path-length-pressure products conditions. Using these spectra, a large set of H2CO individual line intensities was measured simultaneously in both the 5.7 and 3.6 μm spectral regions. From this set of experimental line strength which involve, at 5.7 μm the ν2 band and, at 3.6 μm, the ν1 and ν5 bands together with nine dark bands, it has been possible to derive a consistent set of line intensity parameters for both the 5.7 and 3.6 μm spectral regions. These parameters were used to generate a line list in both regions. For this task, we used the line positions generated in [Margulés L, Perrin A, Janeckovà R, Bailleux S, Endres CP, Giesen TF, et al. Can J Phys, accepted] and [Perrin A, Valentin A, Daumont L, J Mol Struct 2006;780–782:28–42] for the 5.7 and 3.6 μm, respectively. The calculated band intensities derived for the 5.7 and 3.6 μm bands are in excellent agreement with the values achieved recently by medium resolution band intensity measurements. It has to be mentioned that intensities in the 3.6 μm achieved in this work are on the average about 28% stronger than those quoted in the HITRAN or GEISA databases. Finally, at 3.6 μm the quality of the intensities was significantly improved even on the relative scale, as compared to our previous study performed in 2006.  相似文献   

16.
Novel thermopile based on modulation doped AlGaAs/InGaAs heterostructures is proposed and developed for the first time, for uncooled infrared FPA (Focal Plane Array) image sensor application. The high responsivity with the high speed response time are designed to be 4900 V/W with 110 μs under the 2 μm design rule. Based on integrated HEMT–MEMS technology, the 32 × 32 matrix FPA is fabricated to demonstrate its enhanced performances by black body measurement. The technology presented here demonstrates the potential of this approach for low-cost uncooled infrared FPA image sensor application.  相似文献   

17.
In this paper, we present the first observation of the domain structure of Nd–Fe–B magnets with the type-I magnetic contrast in a scanning electron microscope (SEM). The applied method was supported with digital image recording, enhancement and analysis. Observations were made at the surfaces perpendicular to the alignment axis. The domain pattern is revealed in the form of undulated stripes magnetized alternately in the two directions along the alignment axis. However, because of insufficient spatial resolution of the SEM type-I magnetic contrast we could not observe reverse spike domains of about 0.5 μm in diameter, the presence of which was proved by Bitter pattern technique and magnetic force microscopy (MFM). The smallest resolvable domain was 0.8 μm in width, being the best result so far obtained with the type-I magnetic contrast method. Some aspects related to the domain observation with the method applied are discussed in more detail. It is anticipated that the spatial resolution of the method can be improved to 0.2–0.3 μm by employing SEMs with high-brightness electron guns.  相似文献   

18.
ObjectivesWe validate a 4D strategy tailored for 3 T clinical systems to simultaneously quantify function and infarct size in wild type mice after ischemia/reperfusion, with improved spatial and temporal resolution by comparison to previous published protocols using clinical field MRI systems.MethodsC57BL/6J mice underwent 60 min ischemia/reperfusion (n = 14) or were controls without surgery (n = 6). Twenty-four hours after surgery mice were imaged with gadolinium injection and sacrificed for post-mortem MRI and histology with serum also taken for Troponin I levels. The double ECG- and respiratory-triggered 3D FLASH (Fast Low Angle Shot) gradient echo (GRE) cine sequence had an acquired isotropic resolution of 344 μm, TR/TE of 7.8/2.9 ms and acquisition time 25–35 min. The conventional 2D FLASH cine sequence had the same in-plane resolution of 344 μm, 1 mm slice thickness and TR/TE 11/5.4 ms for an acquisition time of 20–25 min plus 5 min for planning. Left ventricle (LV) and right ventricle (RV) volumes were measured and functional parameters compared 2D to 3D, left to right and for inter and intra observer reproducibility. MRI infarct volume was compared to histology.ResultsFor the function evaluation, the 3D cine outperformed 2D cine for spatial and temporal resolution. Protocol time for the two methods was equivalent (25–35 min). Flow artifacts were reduced (p = 0.008) and epi/endo-cardial delineation showed good intra and interobserver reproducibility. Paired t-test comparing ejection volume left to right showed no significant difference for 3D (p = 0.37), nor 2D (p = 0.30) and correlation slopes of left to right EV were 1.17 (R2 = 0.75) for 2D and 1.05 (R2 = 0.50) for 3D.Quantifiable ‘late gadolinium enhancement’ infarct volume was seen only with the 3D cine and correlated to histology (R2 = 0.89). Left ejection fraction and MRI-measured infarct volume correlated (R2 > 0.3).ConclusionsThe 4D strategy, with contrast injection, was validated in mice for function and infarct quantification from a single scan with minimal slice planning.  相似文献   

19.
The laser properties of 1.3 μm spectral region in Nd:YAG crystal and their simultaneous dual wavelength threshold condition are investigated. Three types of high power 1.3-μm Nd:YAG quasi continuous wave (QCW) lasers, which operate at 1.319 μm or 1.338 μm single wavelength, 1.319 μm and 1.338 μm simultaneous dual wavelength, are achieved with a maximum average output power of 138 W, 132 W and 120 W, respectively.  相似文献   

20.
Most infrared transmitting optics have high refractive indices which in turn have high per surface reflection loss. So antireflection coating has very important role in increasing the transmission in the desired wavelength region. In this paper a study has been carried out on the design and fabrication of Thorium free antireflection coating effective for Silicon substrate in MWIR (3.6–4.9 μm) region. The wave band 3.6–4.9 μm is chosen for the reported work because the detected system used in MWIR region has a band selection filter effective in the same wavelength region. Comprehensive search method was used to design the multilayer stack on Silicon substrate. The coating materials used in the design were Germanium (Ge) and Silicon dioxide (SiO2). The fabrication of coating was made in a coating plant fitted with Cryo pump system and Residual Gas Analyzer. The evaporation was carried out at high vacuum (2–6 × 10–6 mbar) using Electron Beam Gun and layer thicknesses were measured with crystal monitor. The result achieved for the antireflection coating was 96% average transmission in 3.6–4.9 μm band which withstood MIL-F-48616 environmental testing. This work provides an alternate antireflection coating on Silicon by replacing radioactive Thorium Fluoride, used as a coating material in most IR antireflection coating designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号