首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new pathway for the preparation of mono-ruthenium (Ru)(iii)-substituted Keggin-type heteropolytungstates with an aqua ligand, [PW(11)O(39)Ru(iii)(H(2)O)](4-) (1a), [SiW(11)O(39)Ru(iii)(H(2)O)](5-) (1b) and [GeW(11)O(39)Ru(iii)(H(2)O)](5-) (1c), using [Ru(ii)(benzene)Cl(2)](2) as a Ru source was described. Compounds 1a-1c were prepared by reacting [XW(11)O(39)](n-) (X = P, Si and Ge) with [Ru(ii)(benzene)Cl(2)](2) under hydrothermal condition and were isolated as caesium salts. Ru(benzene)-supported heteropolytungstates, [PW(11)O(39){Ru(ii)(benzene)(H(2)O)}](5-) (2a), [SiW(11)O(39){Ru(ii)(benzene)(H(2)O)}](6-) (2b) and [GeW(11)O(39){Ru(ii)(benzene)(H(2)O)}](6-) (2c), were first produced in the reaction media, and then transformed to 1a, 1b and 1c, respectively, under hydrothermal conditions. Calcination of Ru(benzene)-supported heteropolytungstates, 2a, 2b and 2c, in the solid state produced mixtures of 1a, 1b and 1c with CO (carbon monoxide)-coordinated complexes, [PW(11)O(39)Ru(ii)(CO)](5-) (4a), [SiW(11)O(39)Ru(ii)(CO)](6-) (4b) and [GeW(11)O(39)Ru(ii)(CO)](6-) (4c), respectively. From comparison of their catalytic activities in water oxidation reaction, it was indicated that ruthenium should be incorporated in the heteropolytungstate in order to promote catalytic activity.  相似文献   

2.
New Ru(II) and Os(II) derivatives of the monovacant [alpha-PW(11)O(39)](7-) anion ([PW(11)O(39){M(DMSO)(3)(H(2)O)}](5-) (M = Ru (1), Os (2)) and [PW(11)O(39){Os(eta(6)-p-cym)(H(2)O)}](5-) (3)) have been synthesized and characterized. The binding mode of the d(6)-{M(II)L(3)(H(2)O)}(2+) moieties in these compounds is similar to that in the previously described [PW(11)O(39){Ru(eta(6)-p-cym)(H(2)O)}](5-) (4) complex: bidentate, on two nonequivalent oxygen atoms of the lacuna, leading to a loss of the C(s) symmetry of the parent anion, which thus plays the role of a prochiral bidentate ligand. The density functional theory (DFT) (B3PW91) computation of the lowest unoccupied molecular orbitals of the {ML(3)(H(2)O)}(2+) (M = Os, Ru; L(3) = fac-(DMSO)(3), eta(6)-C(6)H(6)) fragments reveals the similarities between their electrophilic properties. The origin of the regioselectivity of the grafting was investigated through a DFT (B3PW91) analysis of (i) the highest occupied molecular orbital of [alpha-PW(11)O(39)](7-) and (ii) the relative energies of the different potential regioisomers obtained by a bidentate grafting of the {ML(3)(H(2)O)}(2+) moiety onto the lacuna of [alpha-PW(11)O(39)](7-). The role of the water ligand in the stabilization of this peculiar structure was studied.  相似文献   

3.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

4.
Reaction of in situ generated copper(II)-monosubstituted Keggin polyoxometalates and copper(II)-bipyridine-oxalate complexes in the corresponding alkaline acetate buffer led to the formation of hybrid metal organic-inorganic compounds K(2)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)].14H(2)O (1), K(14)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}](2)[SiW(11)O(39)Cu(H(2)O)].55H(2)O (2), (NH(4))(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (3), and Rb(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (4). Their structures have been established by single-crystal X-ray diffraction. The main structural feature of these compounds is the presence of copper(II)-monosubstituted alpha-Keggin polyoxoanions as inorganic building blocks, on which the mu-oxalatodicopper metalorganic blocks are supported. Compound 1contains the discrete hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)](2)(-), whereas the polymeric hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}(2)](n)(4)(n)(-) gives a monodimensional character to compounds 2-4. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on both the [Cu(2)(bpy)(2)(H(2)O)(4)(mu-ox)](2+) cationic complex and the metalorganic blocks have been performed in order to determine the optimized geometry and the magnetic coupling constants, respectively.  相似文献   

5.
Reaction of [Ru(p-cymene)Cl2]2 with [H7P8W48O184]33- (P8W48) in aqueous acidic medium results in the organometallic derivative [{K(H2O)}3{Ru(p-cymene)(H2O)}4P8W49O186(H2O)2]27- (1); in addition to the four {Ru(p-cymene)(H2O)} units, an unusual WO6 group with four equatorial, terminal ligands is also grafted to the crown-shaped P8W48 precursor.  相似文献   

6.
The condensation reaction of resorcinol with cis-[ClP(μ-N(t)Bu)(2)PN(H)(t)Bu] produced a difunctional derivative 1,3-C(6)H(4)[OP(μ-N(t)Bu)(2)PN(H)(t)Bu](2) (1), whereas the similar reaction with [ClP(μ-N(t)Bu)](2) resulted in the formation of a 1:1 mixture of dimeric and tetrameric species, [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (2a) and [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](4) (2b), which were separated by repeated fractional crystallization and column chromatography. The reaction of dimer 2a with H(2)O(2) and selenium produces tetrachalcogenides [{(O)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (3) and [{(Se)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (4), respectively. The reaction between the dimer (2a) and [Pd(μ-Cl)(η(3)-C(3)H(5))](2) or AuCl(SMe(2)) yielded the corresponding tetranuclear complexes, [{((Cl)(η(3)-C(3)H(5))Pd)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (5) and [{(ClAu)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (6) in good yield. The complexes 5 and 6 are the rare examples of phosphorus macrocycles containing two or more exocyclic transition metal fragments. Treatment of 1 with copper halides in 1:1 molar ratio resulted in the formation of one-dimensional (1D) coordination polymers, [(CuX){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}}(2)](n) (7, X = Cl; 8, X = Br; 9, X = I), which showed the helical structure in solid state because of intramolecular hydrogen bonding, whereas similar reactions of 1 with 4 equiv of copper halides also produced 1D-coordination polymers, [(Cu(2)X(2))(2){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}(2)}](n) (10, X = Cl; 11, X = Br; 12, X = I), but containing Cu(2)X(2) rhomboids instead of CuX linkers. The crystal structures of 1, 2a, 2b, 4, 7-9, and 12 were established by X-ray diffraction studies.  相似文献   

7.
The reaction of [Sb(2)W(22)O(74)(OH)(2)](12-) and [Fe(4)(H(2)O)(10)(β-TeW(9)O(33))(2)](4-) with (NH(4))(2)[RuCl(6)] in aqueous solution resulted in the novel ruthenium(IV)-containing polyanions [{Ru(IV)(4)O(6)(H(2)O)(9)}(2)Sb(2)W(20)O(68)(OH)(2)](4-) and [{Ru(IV)(4)O(6)(H(2)O)(9)}(2){Fe(H(2)O)(2)}(2){β-TeW(9)O(33)}(2)H](-), exhibiting two cationic, adamantane-like, tetraruthenium(IV) units {Ru(4)O(6)(H(2)O)(9)}(4+) bound to the respective polyanion in an external, highly accessible fashion.  相似文献   

8.
Reaction of K(10)[alpha(2)-P(2)W(17)O(61)] or K(10)[alpha(1)-P(2)W(17)O(61)] or [Bu(4)N][OsCl(4)N] in a water/methanol mixture, and subsequent precipitation with (Bu(4)N)Br provided [alpha(2)-P(2)W(17)O(61){Os(VI)N}](7-) and [alpha(1)-P(2)W(17)O(61){Os(VI)N}](7-) Dawson structures as tetrabutylammonium salts. Reactions of [(Bu(4)N)(4)][alpha-H(3)PW(11)O(39)] with either [ReCl(3)(N(2)Ph(2))(PPh(3))(2)] or [Bu(4)N][ReCl(4)N] are alternatives to the synthesis of [(Bu(4)N)(4)][alpha-PW(11)O(39){Re(VI)N}]. (183)W and (15)N NMR, EPR, IR, and UV-visible spectroscopies and cyclic voltammetry have been used to characterize these compounds and the corresponding [(Bu(4)N)(4)][alpha-PW(11)O(39){Os(VI)N}] Keggin derivative.  相似文献   

9.
The scope of N-atom transfer from the electrophilic ruthenium(VI) nitrido containing polyoxometalate [PW(11)O(39)Ru(VI)N](4-) has been extended to the N-heterocyclic carbene {CH(2)(Mes)N}(2)C and the coupling product {CH(2)(Mes)N}(2)CNH(2)(+) characterized by (1)H NMR and high-resolution mass spectrometry. Because guanidines display many fields of applications ranging from biology to supramolecular chemistry, this could afford an original route to the synthesis of cyclic guanidines. This also enlarges the potential of nitrido complexes in the synthesis of heterocycles, mainly illustrated in the literature through the formation of aziridines through N-atom transfer to alkenes. In the course of the reaction, the ruthenium(III)-containing polyoxometallic intermediate [PW(11)O(39)Ru(III){NC{N(Mes)CH(2)}(2)}](5-) has been thoroughly characterized by continuous-wave and pulsed electron paramagnetic resonance, which nicely confirms the presence of the organic moiety on the polyoxometallic framework, Ru K-edge X-ray absorption near-edge structure, and electrochemistry.  相似文献   

10.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

11.
Three {Ru(p-cym)}(2+) (p-cym = p-cymene) derivatives of [Nb(6)O(19)](8-)-[Nb(6)O(19){Ru(p-cym)}](6-) (Nb(6)Ru(1)), trans-[Nb(6)O(19){Ru(p-cym)}(2)](4-) (t-Nb6Ru2), and [Nb(6)O(19){Ru(p-cym)}(4)] (Nb(6)Ru(4))--have been synthesized in water by reaction between [Ru(p-cym)Cl(2)](2) and the hexaniobate. In the solid state, Nb(6)Ru(1) and Nb(6)Ru(4) have been characterized by IR and EDX spectroscopies, whereas t-Nb(6)Ru(2) has been characterized by IR spectroscopy and single-crystal X-ray diffraction (crystal data for K(4)-trans-[Nb(6)O(19){Ru(p-cym)}(2)].14H(2)O (K(4)-t-Nb(6)Ru(2).14H(2)O). In solution, all compounds were characterized by (1)H NMR and ESI mass spectrometry analyses, and Nb(6)Ru(1) was also analyzed by (17)O NMR. These studies allowed a comparison of the differences in behaviour of the three complexes in water: Nb(6)Ru(1) is particularly stable, Nb(6)Ru(4) decomposes by loss of {Ru(p-cym)}(2+) fragments, and trans-[Nb(6)O(19){Ru(p-cym)}(2)](4-) isomerizes into cis-[Nb(6)O(19){Ru(p-cym)}(2)](4-). A rational mechanism for the isomerisation of t-Nb(6)Ru(2) is proposed on the basis of a kinetic study.  相似文献   

12.
A series of molybdenum and tungsten organometallic oxides containing [Ru(arene)]2+ units (arene =p-cymene, C6Me6) was obtained by condensation of [[Ru(arene)Cl2]2] with oxomolybdates and oxotungstates in aqueous or nonaqueous solvents. The crystal structures of [[Ru(eta6-C6Me6]]4W4O16], [[Ru(eta6-p-MeC6H4iPr]]4W2O10], [[[Ru-(eta6-p-MeC6H4iPr)]2(mu-OH)3]2][[Ru(eta6-p-MeC6H4iPr)]2W8O28(OH)2[Ru(eta6-p-MeC6H4iPr)(H2O)]2], and [[Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) have been determined. While the windmill-type clusters [[Ru(eta6-arene)]4(MO3)4(mu3-O)4] (M = Mo, W; arene =p-MeC6H4iPr, C6Me6), the face-sharing double cubane-type cluster [[Ru(eta6-p-MeC6H4iPr)]4(WO2)2(mu3-O)4(mu4-O)2], and the dimeric cluster [[Ru(eta6-p-MeC6H4iPr)(WO3)3(mu3-O)3(mu3-OH)Ru(eta6-pMeC6H4iPr)(H2O)]2(mu-WO2)2]2- are based on cubane-like units, [(Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) are more properly described as lacunary Lindqvist-type polyoxoanions supporting three ruthenium centers. Precubane clusters [[Ru(eta6-arene)](MO3)2(mu-O)3(mu3-O)]6- are possible intermediates in the formation of these clusters. The cluster structures are retained in solution, except for [[Ru(eta6-p-MeC6H4iPr)]4Mo4O16], which isomerizes to the triple-cubane form.  相似文献   

13.
The ligands o-C(6)H(4)(CH(2)EMe)(2) (E = S or Se) have been prepared and characterised spectroscopically. A systematic study of the coordination chemistry of these, together with the telluroether analogue, o-C(6)H(4)(CH(2)TeMe)(2), with late transition metal centers has been undertaken. The planar complexes [MCl(2){o-C(6)H(4)(CH(2)SMe)(2)}] and [M{o-C(6)H(4)(CH(2)EMe)(2)}(2)](PF(6))(2) (M = Pd or Pt; E = S or Se), the distorted octahedral [RhCl(2){o-C(6)H(4)(CH(2)EMe)(2)}(2)]Y (E = S or Se: Y = PF(6); E = Te: Y = Cl) and [RuCl(2){o-C(6)H(4)(CH(2)EMe)(2)}(2)] (E = S, Se or Te), the dithioether-bridged binuclear [{RuCl(2)(p-cymene)}(2){micro-o-C(6)H(4)(CH(2)SMe)(2)}] and the tetrahedral [M'{o-C(6)H(4)(CH(2)EMe)(2)}(2)]BF(4) (M' = Cu or Ag; E = S, Se or Te) have been obtained and characterised by IR and multinuclear NMR spectroscopy ((1)H, (63)Cu, (77)Se{(1)H}, (125)Te{(1)H} and (195)Pt), electrospray MS and microanalyses. Crystal structures of the parent o-C(6)H(4)(CH(2)SMe)(2) and seven complexes are described, which show three different stereoisomeric forms for the chelated ligands, as well as the first example of a bridging coordination mode in [{RuCl(2)(p-cymene)}(2){micro-o-C(6)H(4)(CH(2)SMe)(2)}]. These studies reveal the consequences of the sterically demanding o-xylyl backbone, which typically leads to unusually obtuse E-M-E chelate angles of approximately 100 degrees .  相似文献   

14.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

15.
Density functional theory (DFT) calculations on the model [{FeCp(dpe)}(2){1,4-C(6)H(4)(CN)(2)}](2+) (3(2+); dpe = diphosphinoethane) of salts of the cations [{FeCp(dppe)}(2){1,4-C(6)H(4)(CN)(2)}](2+) (1(2+); dppe = 1,2-bis[diphenyldiphosphino]ethane) and [{FeCp*(CO)(2)}(2){1,4-C(6)H(4)(CN)(2)}](2+) (2(2+)), for which the X-ray crystal structures have been determined, as well as on its isomer [{FeCp(dpe)}(2){1,3-C(6)H(4)(CN)(2)}](2+) (4(2+)) and on the related complex [{FeCp(dpe)}(3){1,3,5-C(6)H(3)(CN)(3)}](3+) (5(2+)), indicate that the highest occupied molecular orbitals (HOMOs) of these compounds are localized on the metal centers with negligible participation of the C(6) ring. Thus, the poly(nitrile)phenylene ligand efficiently quenches the electronic communication between the metal centers. This is at variance with the related isoelectronic polyacetylene phenylene complexes, in which the iron centers have been shown to be electronically coupled. Consistently, apart from the case of 3(3+), which shows some degree of delocalization, all of the oxidized forms of 3(2+), 4(2+), and 5(2+) can be described as class II, localized mixed-valent species, in agreement with the electrochemical data showing two close oxidation potentials around 1 V vs FeCp*(2). This is at variance with the p-phenylene-bridged biethynyldiiron analogue, for which extended electronic delocalization was earlier shown to provide greater degree of delocalization of the mixed valency. Time-dependent DFT calculations on 3(2+), 4(2+), and 5(2+) indicate that the lowest-energy absorption band is associated with metal-to-ligand charge-transfer transitions involving the metallic HOMOs and the two lowest unoccupied molecular orbitals that derive from the lowest π*(phenylene) orbitals with some π*(CN) bonding admixture.  相似文献   

16.
Carbophosphazene-based coordination ligands [{NC(NMe(2))}(2){NP(3,5-Me(2)Pz)(2)}] (1), [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(3,5-Me(2)Pz)(2)}] (2), [NC(3,5-Me(2)Pz)](2)[NP(3,5-Me(2)Pz)(2)] (3), [{NCCl}(2){NP(NC(NMe(2))(2))(2)}] (4), and [{NC(p-OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}] (5) were synthesized and structurally characterized. In these compounds, the six-membered C(2)N(3)P ring is perfectly planar. The reaction of 1 with CuCl(2) afforded [{NC(NMe(2))}(2){NHP(O)(3,5-Me(2)Pz)}·{Cu(3,5-Me(2)PzH)(2)(Cl)}][Cl] (6). The ligand binds to Cu(II) utilizing the geminal [P(O)(3,5-Me(2)Pz)] coordinating unit. Similarly, the reaction of 2 with PdCl(2) afforded, after a metal-assisted P-N hydrolysis, [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(O)(3,5-Me(2)Pz)}·{Pd(3,5-Me(2)PzH)(Cl)}] (7). In the latter, the [P(O)(3,5-Me(2)Pz)] unit does not coordinate; in this instance, the Pd(II) is bound by a ring nitrogen atom and a carbon-tethered pyrazolyl nitrogen atom. The reaction of 3 with PdCl(2) also results in P-N bond hydrolysis affording [{NC(3,5-Me(2)Pz)(2)}{NP(O)(3,5-Me(2)Pz)}{Pd(Cl)}] (8). In contrast to 7, however, in 8, the Pd(II) elicits a nongeminal η(3) coordination from the ligand involving two carbon-tethered pyrazolyl groups and a ring nitrogen atom. Metalated products could not be isolated in the reaction of 3 with K(2)PtCl(4). Instead, a P-O-P bridged carbodiphosphazane dimer, [{NC(3,5-Me(2)Pz)NHC(3,5-Me(2)Pz)}{NP(O)}](2) (9), was isolated as the major product. Finally, the reaction of 5 with PdCl(2) resulted in [{NC(OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}·{PdCl(2)}] (10). In the latter, the exocyclic P-N bonds are quite robust and are involved in binding to the metal ion. Compounds 6-10 have been characterized by a variety of techniques including X-ray crystallography. In all of the compounds, the bond parameters of the inorganic heterocyclic rings are affected by metalation.  相似文献   

17.
A series of organic-inorganic hybrid compounds, K2H7[{Ln(PW11O39)2}{Cu2(bpy)2(mu-ox)}].xH2O (Ln = La, x approximately = 18 (1); Ln = Pr, x approximately = 18(2); Ln = Eu, x approximately = 16(3); Ln = Gd, x approximately 22(4); Ln = Yb, x approximately = 19 (5); bpy = 2,2'-bipyridine and ox = oxalate), have been isolated by the conventional solution method. Single-crystal X-ray diffraction studies reveal that compounds 1-5 are isomorphic and consist of one-dimensional chains, which are constructed by alternating bis(undecatungstophosphate) lanthanates [Ln(PW11O39)2](11-) and dinuclear copper(II)-oxalate complexes [Cu2(bpy)2(mu-ox)]2+.pi-pi interactions of the bpy ligands from adjacent chains lead to their three-dimensional structures. An analogue of potassium K2H9[{K(PW11O39)2}{Cu2(bpy)2(mu-ox)}1].approximately 20.5H2O(6) has also been obtained. The syntheses and structures of these compounds are reported here. Magnetic properties of 1, 2 and 3 are discussed as well. Attempts to crystallize similar compounds containing Co(II) and Ni(II) were unsuccessful.  相似文献   

18.
Reaction of [Bu(4)N](4)[H(3)PW(11)O(39)] with [Re(NPh)Cl(3)(PPh(3))(2)], in acetonitrile and in the presence of NEt(3), provided the first Keggin-type organoimido derivative [Bu(4)N](4)[PW(11)O(39)(ReNPh)] (Ph = C(6)H(5)) (1). The functionalization was clearly demonstrated by various techniques including (1)H and (14)N NMR, electrochemistry, and ESI mass spectrometry. Conditions for the formation of 1 are also discussed.  相似文献   

19.
Arene ruthenium(II) complexes containing bis(pyrazolyl)methane ligands have been prepared by reacting the ligands L' (L' in general; specifically L(1) = H(2)C(pz)(2), L(2) = H(2)C(pz(Me2))(2), L(3) = H(2)C(pz(4Me))(2), L(4) = Me(2)C(pz)(2) and L(5) = Et(2)C(pz)(2) where pz = pyrazole) with [(arene)RuCl(mu-Cl)](2) dimers (arene = p-cymene or benzene). When the reaction was carried out in methanol solution, complexes of the type [(arene)Ru(L')Cl]Cl were obtained. When L(1), L(2), L(3), and L(5) ligands reacted with excess [(arene)RuCl(mu-Cl)](2), [(arene)Ru(L')Cl][(arene)RuCl(3)] species have been obtained, whereas by using the L(4) ligand under the same reaction conditions the unexpected [(p-cymene)Ru(pzH)(2)Cl]Cl complex was recovered. The reaction of 1 equiv of [(p-cymene)Ru(L')Cl]Cl and of [(p-cymene)Ru(pzH)(2)Cl]Cl with 1 equiv of AgX (X = O(3)SCF(3) or BF(4)) in methanol afforded the complexes [(p-cymene)Ru(L')Cl](O(3)SCF(3)) (L' = L(1) or L(2)) and [(p-cymene)Ru(pzH)(2)Cl]BF(4), respectively. [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) formed when [(p-cymene)Ru(L(1))Cl]Cl reacts with an excess of AgPF(6). The solid-state structures of the three complexes, [(p-cymene)Ru{H(2)C(pz)(2)}Cl]Cl, [(p-cymene)Ru{H(2)Cpz(4Me))(2)}Cl]Cl, and [(p-cymene)Ru{H(2)C(pz)(2)}Cl](O(3)SCF(3)), were determined by X-ray crystallographic studies. The interionic structure of [(p-cymene)Ru(L(1))Cl](O(3)SCF(3)) and [(p-cymene)Ru(L')Cl][(p-cymene)RuCl(3)] (L' = L(1) or L(2)) was investigated through an integrated experimental approach based on NOE and pulsed field gradient spin-echo (PGSE) NMR experiments in CD(2)Cl(2) as a function of the concentration. PGSE NMR measurements indicate the predominance of ion pairs in solution. NOE measurements suggest that (O(3)SCF(3))(-) approaches the cation orienting itself toward the CH(2) moiety of the L(1) (H(2)C(pz)(2)) ligand as found in the solid state. Selected Ru species have been preliminarily investigated as catalysts toward styrene oxidation by dihydrogen peroxide, [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) being the most active species.  相似文献   

20.
We report the dimerization of a mono-ruthenium(III) substituted alpha-Keggin-type tungstosilicate [alpha-SiW(11)O(39)Ru(III)(H2O)](5-) to a micro-oxo-bridged dimer [{alpha-SiW(11)O(39)Ru(m)}2O](n-) (m = III, n = 12; m = IV/III, n = 11; m = IV, n = 10). Single crystal X-ray structure analysis of Rb(10)[{alpha-SiW(11)O(39)Ru(IV)}2O].9.5H2O (triclinic, P1, with a = 12.7650(6) A, b = 18.9399(10) A, c = 20.2290(10) A, alpha = 72.876(3) degrees, beta = 88.447(3) degrees, gamma = 80.926(3) degrees, V = 4614.5(4) A(3), Z = 2) reveals that two mono-ruthenium substituted tungstosilicate alpha-Keggin units are connected through micro-oxo-bridging Ru-O-Ru bonds. Solution (183)W-NMR of [{SiW(11)O(39)Ru(IV)}2O](10-) resulted in six peaks (-63, -92, -110, -128, -132, and -143 ppm, intensities 2 : 2 : 1 : 2 : 2 : 2) confirming that the micro-oxo bridged dimer structure is maintained in aqueous solution. The dimerization mechanism is presumably initiated by deprotonation of the aqua-ruthenium complex [alpha-SiW(11)O(39)Ru(III)(H2O)](5-) leading to a hydroxy-ruthenium complex [alpha-SiW(11)O(39)Ru(III)(OH)](6-). Dimerization of two hydroxy-ruthenium complexes produces the micro-oxo bridged dimer [{alpha-SiW(11)O(39)Ru(III)}2O](12-) and a water molecule. The Ru(III) containing dimer is oxidized by molecular oxygen to produce a mixed valence species [{alpha-SiW(11)O(39)Ru(IV-III)}2O](11-), and further oxidation results in the Ru(IV) containing [{alpha-SiW(11)O(39)Ru(IV)}2O](10-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号