首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Vertically aligned multi-walled carbon nanotube arrays grown on quartz substrate are obtained by co-pyrolysis of xylene and ferrocene at 850 oC in a tube furnace. Raman spectroscopy and high resolution transmission electron microscopy measurements show that the single-walled carbon nanotubes are only present on top of vertically aligned multi-walled carbon nanotube arrays. It has been revealed that isolated single-walled carbon nanotubes are only present in those floating catalyst generated materials. It thus suggests that the single-walled carbon nanotubes here are also generated by floating catalyst. Vertically alignedcarbon nanotube arrays on the quartz substrate have shown good orientation and good graphitization. Meanwhile, to investigate the growth mechanism, two bi-layers carbon nan-otube films with di erent thickness have been synthesized and analyzed by Raman spectroscopy. The results show that the two-layer vertically aligned carbon nanotube films grow “bottom-up”. There are distinguished Raman scattering signals for the second layer itself, surface of the first layer, interface between the first and second layer, side wall and bottom surface. It indicates that the obtained carbon nanotubes follow the base-growth mechanism, and the single-walled carbon nanotubes grow from their base at the growth beginning when iron catalyst particles have small size. Those carbon nanotubes with few walls (typically <5 walls) have similar properties, which also agree with the base-growth mechanism.  相似文献   

2.
采用酸溶液处理方法对垂直于衬底生长的碳纳米管阵列的纯化进行了研究. 利用扫描电子显微镜、X射线光电子能谱等手段对纯化前后的碳纳米管阵列的结构、形貌及化学组成进行表征. 实验结果表明, 通过控制条件, 酸溶液处理方法能够在有效地去除催化剂粒子等杂质的同时又保持阵列的相对完整性. 纯化后的碳纳米管阵列会促进其在电子学领域的进一步应用.  相似文献   

3.
A simple acid treatment method was applied to remove the catalyst impurities and other residues contaminated in the vertically aligned carbon nanotube arrays. We demonstrated that acid treatment was an efficient approach for aligned carbon nanotube purification. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the morphology of the aligned carbon nanotube arrays and to determine the efficiency of the purification. Using hydrochloric acid could efficiently eliminate catalyst impurities and retain the original structures of the aligned carbon nanotube arrays. The method provided a simple, economical, and effective way to purify the aligned carbon nanotubes, and it would promote the applications of vertically aligned carbon nanotube arrays in electronic field.  相似文献   

4.
氧化铝模板上定向纳米碳管的快速生长及超声切短   总被引:5,自引:0,他引:5  
在阳极氧化铝(AAO)模板上电沉积催化剂,快速生长了定向纳米碳管,纳米碳管以顶部生长模式生长.采用了超声的方法来切短露头于AAO模板的纳米碳管,增加纳米碳管膜的定向性.结果显示随着超声时间的增加,纳米碳管的定向性增加.位于纳米碳管膜顶部的催化剂在碳管切短的同时被去除,得到了顶部开口的纳米碳管.解释了纳米碳管被超声切短的机理.  相似文献   

5.
The influence of both nanotube orientation and length on the electrochemical properties of electrodes modified with single-walled carbon nanotubes was investigated. Gold electrodes were modified with either randomly dispersed or vertically aligned nanotubes to which ferrocenemethylamine was attached. Electron transfer kinetics were found to depend strongly on the orientation of the nanotube, with electron transfer between the gold electrode and the ferrocene moiety being 40 times slower through randomly dispersed nanotubes than through vertically aligned nanotubes. The difference is hypothesized to be due to electron transfer being more direct through a single tube than that with electrodes modified with randomly dispersed nanotubes. With the vertically aligned nanotubes the rate constant for electron transfer varied inversely with the mean length of the nanotubes. The results indicate there is an advantage in using aligned carbon nanotube arrays over randomly dispersed nanotubes for achieving efficient electron transfer to bound redox active species such as in the case of bioelectronic or photovoltaic devices.  相似文献   

6.
Herein we report a CVD approach to prepare high-density and perfectly aligned arrays of long SWNTs on stable temperature (ST)-cut quartz substrates using copper as catalyst and ethanol as carbon source. Compared with earlier reports, we have demonstrated that the aligned nanotube arrays can be grown on ST quartz substrate without the need of thermal annealing. The density can reach >50 nanotubes per micron and the length can be a few millimeters. Additionally, we have obtained direct proof on the "tip-growth" mechanism for the aligned nanotubes and important evidence that explained the termination of the growth.  相似文献   

7.
The main obstacle to widespread application of single-wall carbon nanotubes is the lack of reproducible synthesis methods of pure material. We describe a new growth method for single-wall carbon nanotubes that uses molecular beams of precursor gases that impinge on a heated substrate coated with a catalyst thin film. In this growth environment the gas and the substrate temperature are decoupled and carbon nanotube growth occurs by surface reactions without contribution from homogeneous gas-phase reactions. This controlled reaction environment revealed that SWCNT growth is a complex multicomponent reaction in which not just C, but also H, and O play a critical role. These experiments identified acetylene as a prolific direct building block for carbon network formation that is an order of magnitude more efficient than other small-molecule precursors. The molecular jet experiments show that with optimal catalyst particle size the incidence rate of acetylene molecules plays a critical role in the formation of single-wall carbon nanotubes and dense vertically aligned arrays in which they are the dominant component. The threshold for vertically aligned growth, the growth rate, the diameter, and the number of walls of the carbon nanotubes are systematically correlated with the acetylene incidence rate and the substrate temperature.  相似文献   

8.
We report the self-assembly of zigzag patterns consisting of aligned carbon nanotubes inside Au microtrenches by chemical vapor deposition using ferrocene/xylene solution as the precursor. The zigzag nanotubes have uniform size and constant interpattern distance, which can be controlled by simply changing the width of the Au trenches. We demonstrated the tunable length and orientation of nanotubes during self-assembly, leading to a predictable motion of zigzag patterns. A growth model was proposed for the zigzag assembly of nanotubes, including the formation and subsequent splitting of an amorphous carbon layer on the pattern top. Rows of nanotube micropatterns regularly distributed along the Au trench are potential candidates as integrated arrays of thermal or mechanical detectors and actuators.  相似文献   

9.
In the present study, we report the chemical vapor deposition (CVD) of nitrogen-doped (N-doped) aligned carbon nanotubes on a silicon (Si) substrate using ferrocene (Fe(C5H5)2) as catalyst and acetonitrile (CH3CN) as the carbon source. The effect of experimental conditions such as temperature, gaseous environment, and substrates on the structure and morphology of N-doped carbon nanotubes arrays is reported. From XPS and EELS data, it was found that the nitrogen content of the nanotubes could be determined over a wide range, from 1.9% to 12%, by adding the addition of hydrogen (H2) to the reaction system. It was also shown by SEM that N-doped carbon nanotube arrays could be produced on Si and SiO2 substrates at suitable temperatures, although at different growth rates. Using these concentrations, it was possible to produce three-dimensional (3D) carbon nanotubes architectures on predetermined Si/SiO2 patterns. The mechanism underlying the effect of nitrogen containing carbon sources on nanotube formation was explored using X-ray photoelectron spectroscopy (XPS).  相似文献   

10.
The three-dimensional (3D) accessible pore structures (Imm space groups) of continuous mesoporous silica SBA-16 thin films have been prepared by a dip-coating technique in nonaqueous media under acidic conditions on indium-tin oxide glass (ITO). The films are oriented with the (111) crystal plane perpendicular to the surface of the film. On one hand, deposition of iron metal into the mesopores of SBA-16 films was achieved by using an electrochemical method. The Fe2O3 nanowire arrays were synthesized. The crystalline structures of porous Fe2O3 nanowires and nanorods were studied via TEM, SEM, and XRD. On the other hand, a small amount of Fe was deposited into the pores of the SBA-16 thin film as a catalyst, and carbon nanotube arrays formed inside the pores of SBA-16 film were fabricated by catalytic decomposition of acetylene at 700 degrees C. The second-order template synthesis method for preparing the ordered array of carbon nanotubes filled with Fe has been used. The carbon nanotubes are very uniform in diameter and length and are aligned vertically with respect to the SBA-16 film.  相似文献   

11.
This paper reports a novel approach for developing a microfluidic electrochromatographic chip device using patterned vertically aligned carbon nanotubes as the stationary phase material. Patterned growth of nanotubes in a specific location of the channel is carried out using a solid phase Fe–Al catalyst as well as a vapor deposited ferrocene catalyst. Proof-of-concept applications are demonstrated using reversed phase capillary electrochromatographic separations as well as solid phase extraction of a glycosylated protein using concanavalin A immobilized onto the nanotube bed.  相似文献   

12.
As a promising one-dimensional material for building nanodevices, single-wall carbon nanotubes (SWNTs) should be organized into a rational architecture on the substrate surface. In this study, horizontally aligned SWNTs with two alignment modes were synthesized on the same R-plane sapphire wafer by chemical vapor deposition with cationized ferritins as catalysts. In the middle part of the wafer, SWNTs were aligned on the R-plane sapphire in the direction [1101]. At the edge of the wafer, SWNTs were aligned in the tangential direction to the wafer edge. The comparison of these two groups of SWNTs suggests the competition between the two alignment modes and indicates that atomic steps in high density have superior influence on the SWNTs' alignment to the crystal structure on the surface of the sapphire substrate. A "raised-head" growth mechanism model is proposed to explain why catalysts can stay active during the horizontally aligned growth of relatively long SWNTs with the strong interaction between SWNTs and the sapphire substrate.  相似文献   

13.
A new membrane electrode assembly set up for catalytic processes containing carbon nanotubes has been developed. The process includes the nanotube synthesis, sputter deposition of platinum as catalyst and the membrane casting. Aligned nanotube carpets were grown from toluene/ferrocene solutions and sputtered with platinum. Subsequently the assembly was investigated using cyclic voltammetry to confirm a sufficient catalyst activity. A procedure was developed to embed the carbon nanotubes doped with catalyst into SPEEK membranes, while preserving the aligned structure and keeping some surface area of the catalyst-doped nanotubes free of membrane material to allow for easy access to reactants. So far the best results were obtained using an aligned but somewhat loose nanotube structure and a deposition of 0.034 mg/cm2 Pt, forming a combination of small catalyst clusters and a thin film. The assemblies are optimized in respect to application in fuel cells and functional membranes.  相似文献   

14.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

15.
Millimeter-long and well-aligned single-walled carbon nanotubes (SWNTs) have been produced on silica/silicon surfaces using the carbon monoxide chemical vapor deposition (CO-CVD) method. The orientation of the nanotube arrays can be well-controlled by the gas flow during the growth. The majority of the orientated SWNTs are straight and individual. The length of the nanotubes can be >2 mm for a 10 min growth. Furthermore, multidimensional crossed-networks of SWNT can be easily generated by multistep processes. These results present a great opportunity in the controllable production of organized SWNT arrays for large-scale carbon nanotube-based nanodevice fabrication.  相似文献   

16.
On single-crystal substrates, such as sapphire (alpha-Al 2O 3) and quartz (SiO 2), single-walled carbon nanotubes (SWNTs) align along specific crystallographic axes of the crystal, indicating that the SWNT growth is influenced by the crystal surface. Here, we show that not only the orientation, but also the diameter and chirality of SWNTs are affected by the crystal plane of the sapphire substrate. The aligned SWNTs grown on the A- and R-planes of sapphire have narrower diameter distributions than randomly oriented tubes produced on the C-plane sapphire and amorphous SiO 2. Photoluminescence measurements reveal a striking difference between the aligned SWNTs: near-zigzag tubes are observed on the A-plane and near-armchair tubes on the R-plane. This study shows the route for the diameter and chirality control of SWNTs by surface atomic arrangements of a single-crystal substrate.  相似文献   

17.
本文使用结构简单的单温炉设备, 以二茂铁/三聚氰胺混合物为原料, 采用独特的三步升温方法于光滑的SiO2衬底上合成出了大面积的阵列碳纳米管, 并对碳纳米管的形貌和结构进行了研究.  相似文献   

18.
Asymmetric end-functionalization of carbon nanotubes was achieved by sequentially floating a substrate-free aligned carbon nanotube film on two different photoreactive solutions with only one side of the nanotube film being contacted with the photoreactive solution and exposed to UV light each time. The resultant nanotubes with different chemical reagents attached onto their opposite tube-ends should be very useful for site-selective self-assembling of carbon nanotubes into many novel functional structures for various potential applications.  相似文献   

19.
Large-scale synthesis of perpendicularly aligned helical carbon nanotubes   总被引:4,自引:0,他引:4  
Large-scale perpendicularly aligned helical carbon nanotube arrays were prepared by co-pyrolysis of Fe(CO)5 and pyridine onto the pristine quartz glass plates in a tube furnace at 900-1100 degrees C under a mixture flow of Ar and H2. The resultant aligned helical carbon nanotubes could not only facilitate the structure-property characterization for helical carbon nanotubes but also allow them to be effectively incorporated into devices for practical applications.  相似文献   

20.
The diameter of single walled carbon nanotubes (SWNTs) determines the electronic properties of the nanotube. The diameter of carbon nanotubes is dictated by the diameter of the catalyst particle. Here we describe the use of iron nanoparticles synthesized within the Dps protein cage as catalysts for the growth of single-walled carbon nanotubes. The discrete iron particles synthesized within the Dps protein cages when used as catalyst particles gives rise to single-walled carbon nanotubes with a limited diameter distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号