首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phototropin is a plant blue-light sensor protein that possesses a flavin mononucleotide (FMN) as the chromophore in LOV domains. Its photoreaction is an adduct formation between FMN and a nearby cysteine that takes place in the triplet excited state of FMN. In this communication, we revealed that the reactive cysteine is protonated in the triplet excited state of the LOV2 domain of Adiantum phytochrome3 by means of low-temperature FTIR spectroscopy. Its hydrogen-bonding interaction is strengthened in the triplet excited state, presumably with the FMN chromophore. Such strong interaction drives adduct formation on a microsecond time scale.  相似文献   

2.
Phototropin is a blue-light receptor involved in the phototropic response of higher plants. The photoreceptor comprises a protein kinase domain and two structurally similar flavin-mononucleotide (FMN) binding domains designated LOV1 and LOV2. Blue-light irradiation of recombinant LOV2 domains induces the formation of a covalent adduct of the thiol group of a functional cysteine in the cofactor-binding pocket to C(4a) of the FMN. Cysteine-to-alanine mutants of LOV domains are unable to form that adduct but generate an FMN radical upon illumination. The recombinant C450A mutant of the LOV2 domain of Avena sativa phototropin was reconstituted with universally and site-selectively (13)C-labeled FMN and the (13)C NMR signals were unequivocally assigned. (13)C NMR spectra were acquired in darkness and under blue-light irradiation. The chemical shifts and the coupling patterns of the signals were not affected by irradiation. However, under blue-light exposure, exceptionally strong nuclear-spin polarization was developed in the resonances belonging to certain carbons of the FMN's isoalloxazine moiety. An enhancement of the NMR absorption was observed for the signals of C(5a), C(7), and C(9). NMR lines in emission were detected for the signals belonging to C(2), C(4), C(4a), C(6), C(8), and C(9a). The signal of C(10a) remained in absorption but was slightly attenuated. In contrast, the intensities of the NMR signals belonging to the carbons of the ribityl side chain of FMN were not affected by light. The observation of spin-polarized (13)C-nuclei in the NMR spectra of the mutant LOV2 domain is clear evidence for radical-pair intermediates in the reaction steps following optical sample excitation.  相似文献   

3.
Plants use sophisticated photosensing mechanisms to maximize their utilization of the available sunlight and to control developmental processes. The plant blue-light receptors of the Phot family mediate plant phototropism and contain two light, oxygen, and voltage (LOV)-sensitive domains as photoactive elements. Here, we report combined quantum mechanical/molecular mechanical simulations of the photocycle of a complete Phot-LOV1 domain from Chlamydomonas reinhardtii. We have investigated the electronic properties and structural changes that follow blue-light absorption. This permitted us to characterize the pathway for flavin-cysteinyl adduct formation, which was found to proceed via a neutral radical state generated by hydrogen atom transfer from the reactive cysteine residue, Cys57, to the chromophore flavin mononucleotide. Interestingly, we find that adduct formation does not cause any larger scale conformational changes in Phot-LOV1, which suggests that dynamic effects mediate signal transmission following the initial photoexcitation event.  相似文献   

4.
The blue light photoreceptor phototropin mediates crucial processes in plants leading to optimization of photosynthesis. Phototropin comprises two flavin mononucleotide-binding LOV (light-, oxygen-, or voltage-sensitive) domains. The LOV domains undergo a photocycle upon illumination, in which two intermediates have been detected by UV/Vis spectroscopy. The triplet excited state of flavin is formed and decays within a few microseconds into a photoadduct with an adjacent cysteine, which represents the signaling state of the LOV domain. For bond formation of the photoadduct, several reaction pathways have been proposed, but evidence for an intermediate at ambient conditions has not been found. Here, we performed nanosecond time-resolved UV/Vis spectroscopy on the phototropin-LOV1 domain from Chlamydomonas reinhardtii. We designed a flow cell which was used to efficiently replace the sample after each photoexcitation because the cycling time is in the order of hundreds of seconds. The comparison of difference spectra of the wild type with those of the C57S mutant that produces only the triplet excited state revealed the existence of an additional intermediate between the triplet and the adduct state. This intermediate exhibits spectral properties similar to a neutral flavin radical. This finding supports a reaction mechanism involving a neutral radical pair.  相似文献   

5.
BLUF and LOV are blue-light sensor domains that possess flavin as a common chromophore but exhibit distinct photoreactions. Ile66 located in the BLUF domain of a cyanobacterial photosensor protein, TePixD, was replaced with Cys to mimic the LOV domain. Light-induced Fourier transform infrared spectra of the I66C TePixD showed that a flavin-Cys adduct, typical of the photoinduced intermediates of LOV domains, was formed in the I66C BLUF domain. This result demonstrates that different types of flavin photoreactions can be realized in the same domain if key amino acids are properly arranged near the flavin and the domain structure itself is not a crucial factor to determine the photoreaction type.  相似文献   

6.
An extended hydrogen-bonding (HB) network stabilizes the isoalloxazine ring of the flavin mononucleotide (FMN) chromophore within the photosensing LOV domain of blue-light protein receptors, via interactions between the C(2)═O, N(3)H, C(4)═O, and N(5) groups and conserved glutamine and asparagine residues. In this work we studied the influence of the HB network on the efficiency, kinetics, and energetics of a LOV protein photocycle, involving the reversible formation of a FMN-cysteine covalent adduct. The following results were found for mutations of the conserved amino acids N94, N104, and Q123 in the Bacillus subtilis LOV protein YtvA: (i) Increased (N104D, N94D) or strongly reduced (N94A) rate of adduct formation; this latter mutation extends the lifetime of the flavin triplet state, i.e., adduct formation, more than 60-fold, from 2 μs for the wild-type (WT) protein to 129 μs. (ii) Acceleration of the overall photocycle for N94S, N94A, and Q123N, with recovery lifetimes 20, 45, and 85 times faster than for YtvA-WT, respectively. (iii) Slight modifications of FMN spectral features, correlated with the polarization of low-energy transitions. (iv) Strongly reduced (N94S) or suppressed (Q123N) structural volume changes accompanying adduct formation, as determined by optoacoustic spectroscopy. (v) Minor effects on the quantum yield, with the exception of a considerable reduction for Q123N, i.e., 0.22 vs 0.49 for YtvA-WT. The data stress the importance of the HB network in modulating the photocycle of LOV domains, while at the same time establishing a link with functional responses.  相似文献   

7.
The blue-light sensitive photoreceptor, phototropin, is a flavoprotein which regulates the phototropism response of higher plants. The photoinduced triplet state and the photoreactivity of the flavin-mononucleotide (FMN) cofactor in two LOV domains of Avena sativa, Adiantum capillus-veneris, and Chlamydomonas reinhardtii phototropin have been studied by time-resolved electron paramagnetic resonance (EPR) and UV-vis spectroscopy at low temperatures (T < or = 80 K). Differences in the electronic structure of the FMN as reflected by altered zero-field splitting parameters of the triplet state could be correlated with changes in the amino acid composition of the binding pocket in wild-type LOV1 and LOV2 as well as in mutant LOV domains. Even at cryogenic temperatures, time-resolved EPR experiments indicate photoreactivity of the wild-type LOV domains, which was further characterized by UV-vis spectroscopy. Wild-type LOV1 and LOV2 were found to form an adduct between the FMN cofactor and the functional cysteine with a yield of 22% and 68%, respectively. The absorption maximum of the low-temperature photoproduct of wild-type LOV2 is red-shifted by about 15 nm as compared with the FMN C(4a)-cysteinyl adduct formed at room temperature. In light of these observations, we discuss a radical-pair reaction mechanism for the primary photoreaction in LOV domains.  相似文献   

8.
Conformational dynamics of LOV2 domain of phototropin, a plant blue light photoreceptor, is studied by the pulsed laser induced transient grating (TG) technique. The TG signal of LOV2 without the linker part to the kinase domain exhibits the thermal grating signal due to the heat releasing from the excited state and a weak population grating by the adduct formation. The diffusion coefficients of the adduct product after forming the chemical bond between the chromophore and Cys residue are found to be slightly smaller than that of the reactant, which implies that the core shrinks slightly on the adduct formation. After that change, no significant conformational change was observed. On the other hand, the signal of LOV2 with the linker part to the kinase domain clearly shows very different diffusion coefficients between the original and the adduct species. The large difference indicates significant global conformational change of the protein moiety upon the adduct formation. More interestingly, the diffusion coefficient is found to be time-dependent in the observation time range. The dynamics representing the global conformational change is a clear indication of a spectral silent intermediate between the excited triplet state and the signaling product. From the temporal profile analysis of the signal, the rate of the conformational change is determined to be 2 ms.  相似文献   

9.
The phototropins are blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine in light, oxygen or voltage (LOV) domains. The primary reactions of the Avena sativa phototropin 1 LOV2 domain were investigated by means of time-resolved and low-temperature fluorescence spectroscopy. Synchroscan streak camera experiments revealed a fluorescence lifetime of 2.2 ns in LOV2. A weak long-lived component with emission intensity from 600 to 650 nm was assigned to phosphorescence from the reactive FMN triplet state. This observation allowed determination of the LOV2 triplet state energy level at physiological temperature at 16600 cm(-1). FMN dissolved in aqueous solution showed pH-dependent fluorescence lifetimes of 2.7 ns at pH 2 and 3.9-4.1 ns at pH 3-8. Here, too, a weak phosphorescence band was observed. The fluorescence quantum yield of LOV2 increased from 0.13 to 0.41 upon cooling the sample from 293 to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K in the steady-state emission.  相似文献   

10.
Phy3-LOV2 is the chromophore domain of a blue-light photoreceptor for tropic responses of plants. FMN is noncovalently bound to phy3-LOV2, and the protein structure is characteristic of the LOV (light-oxygen-voltage) domain. Primary photoreaction is considered to be adduct formation between FMN and a cysteine, while deprotonation of the cysteine S-H group was suggested. On the basis of the infrared spectral analysis, however, we have shown that the cysteine of phy3-LOV2 is in the protonated S-H form, and not in the thiolate form in the ground state. Upon formation of S390, the S-H group disappears, presumably forming the adduct between FMN and Cys966. S390 can be trapped at 150 K, and the protein structure of S390 may not be changed drastically at 295 K.  相似文献   

11.
Light, oxygen, or voltage (LOV) domains constitute a new class of photoreceptor proteins that are sensitive to blue light through a noncovalently bound flavin chromophore. Blue-light absorption by the LOV2 domain initiates a photochemical reaction that results in formation of a long-lived covalent adduct between a cysteine and the flavin cofactor. We have applied ultrafast spectroscopy on the photoaccumulated covalent adduct state of LOV2 and find that, upon absorption of a near-UV photon by the adduct state, the covalent bond between the flavin and the cysteine is broken and the blue-light-sensitive ground state is regained on an ultrafast time scale of 100 ps. We thus demonstrate that the LOV2 domain is a reversible photochromic switch, which can be activated by blue light and deactivated by near-UV light.  相似文献   

12.
The open reading frame PP2739 from Pseudomonas putida KT2440 encodes a 151 amino acid protein with sequence similarity to the LOV domains of the blue-light sensitive protein YtvA from Bacillus subtilis and to the phototropins (phot) from plants. This sensory box LOV protein, PpSB2-LOV, comprises a LOV core, followed by a C-terminal segment predicted to form an alpha-helix, thus constituting a naturally occurring paradigm for an extended LOV construct. The recombinant PpSB2-LOV shows a photochemistry very similar to that of YtvA and phot-LOV domains, yet the lifetime for the recovery dark reaction, taurec=114 s at 20 degrees C, resembles that of phot-LOV domains (5-300 s) and is much faster than that of YtvA or YtvA-LOV (>3000 s). Time-resolved optoacoustics reveals phot-like, light-driven reactions on the ns-micros time window with the sub-nanosecond formation of a flavin triplet state (PhiT=0.46) that decays into the flavin-cysteine photoadduct with 2 micros lifetime (Phi390=0.42). The fluorescence spectrum and lifetime of the conserved W97 resembles the corresponding W103 in full-length YtvA, although the quantum yield, PhiF, is smaller (about 55% of YtvA) due to an enhanced static quenching efficiency. The anisotropy of W97 is the same as for W103 in YtvA (0.1), and considerably larger than the value of 0.06, found for W103 in YtvA-LOV. Different to YtvA and YtvA-LOV, the fluorescence for W97 becomes larger upon photoproduct formation. These data indicate that W97 is located in a similar environment as W103 in full-length YtvA, but undergoes larger light-driven changes. It is concluded that the protein segment located C-terminally to the LOV core (analogous to an interdomain linker) is enough to confer to the conserved tryptophan the fluorescence characteristics typical of full-length YtvA. The larger changes experienced by W97 upon light activation may reflect a larger conformational freedom of this protein segment in the absence of a second domain.  相似文献   

13.
In LOV2, the blue-light sensitive domain of phototropin, the primary photophysical event involves intersystem crossing (ISC) from the singlet-excited state to the triplet state. The ISC rate is enhanced in LOV2 as compared to flavin mononucleotide (FMN) in solution, which likely results from a heavy-atom effect of a nearby conserved cysteine, C450. Here, we applied fluorescence line narrowing (FLN), resonance Raman (RR) and Fourier-transform infrared (FTIR) spectroscopy to investigate the electronic structure of FMN bound to Avena sativa LOV2 (AsLOV2), its C450A mutant and Adiantum LOV2 (Phy3LOV2). We demonstrate that FLN is the method of choice to obtain accurate vibrational spectra on highly fluorescent flavoproteins. The vibrational spectrum of AsLOV2-C450A showed small but significant shifts with respect to those of wild type AsLOV2 and Phy3LOV2, with a systematic down-shift of Ring I vibrations, upshifts of Ring II and III vibrations and an upshift of the C2=O mode. These trends are similar to those in FMN model systems with an electron-donating group substituted at Ring I, known to induce a quinoid character to the electronic structure of oxidized flavin. Thus, enhancement of the ISC rate in LOV2 is induced through weak electron donation by the cysteine which mixes the FMN pi-electrons with the heavy sulfur orbitals, manifesting itself in a quinoid character of the ground electronic state of oxidized FMN. The proximity of the cysteine to FMN thus not only enables formation of a covalent adduct between FMN and cysteine, but also facilitates the rapid electronic formation of the reactive FMN triplet state.  相似文献   

14.
Mutagenesis studies on the phototropin-related protein YtvA from Bacillus subtilis have revealed the role of selected structural elements in interdomain communication. The LOV (light, oxygen, voltage) domain of YtvA undergoes light-driven reactions similar to that of phot-LOV, with reversible formation of a covalent flavin-cysteine adduct. The mutated proteins Ytva-E105L and YtvA-E56Q have been studied by UV fluorescence and circular dichroism (CD) spectroscopy. E105 (L in phototropin) is located at the solvent-exposed surface of the LOV domain central beta-sheet, demonstrated to participate in interdomain interaction in phototropin. CD data show that YtvA-E105L has a lower alpha-helix content in the dark and undergoes larger light-driven conformational changes than YtvA-WT. The E56Q mutation breaks the E56-K97 salt bridge, a structural element highly conserved within the LOV series. In YtvA-E56Q the CD spectrum is the same as in YtvA-WT, although the conserved W103 becomes more exposed to the solvent and the dark-recovery kinetics is slower. These results indicate that the E56-K97 salt bridge stabilizes locally the protein structure and participates in the regulation of the photocycle but has negligible effects on the overall structure. The E105L mutation, instead, highlights the involvement of the central beta-sheet in the light-driven conformational changes in LOV proteins.  相似文献   

15.
The mechanism for signal transduction from the LOV-domains toward the kinase region of phototropin is still not well understood. We have performed molecular dynamics (MD) simulations and CONCOORD calculations on the LOV2 domain of Adiantum capillus-veneris, with the goal to detect possible differences between the two forms of the LOV domain which may not show up in the static crystal structures. Since no such clear differences are found in the MD simulations also, we suggest that the real, biologically active conformation of the LOV domain within the whole phototropin is different from the crystal structure of the isolated LOV domains. The MD simulations do offer, however, insight into details of the dynamics of the dark and illuminated LOV domains, which are discussed in the light of recent experiments.  相似文献   

16.
The absorption and emission behavior of flavin mononucleotide (FMN) in the light-, oxygen- and voltage-sensitive (LOV) domain LOV1 of the photoreceptor Phot1 from the green alga Chlamydomonas reinhardtii was studied. The results from the wild-type (LOV1-WT) were compared with those from a mutant in which cysteine 57 was replaced by serine (LOV1-C57S), and with free FMN in aqueous solution. A fluorescence quantum yield of phi(F) = 0.30 and a fluorescence lifetime of tau(F) = 4.6 ns were determined for FMN in the mutant LOV1-C57S, whereas these quantities are reduced to about phi(F) = 0.17 and tau(F) = 2.9 ns for LOV1-WT, indicating an enhanced intersystem crossing in LOV1-WT because of the adjacent sulfur of C57. A single-exponential fluorescence decay was observed in picosecond laser time-resolved fluorescence measurements for both LOV1-WT and LOV1-C57S as expected for excited singlet state relaxation by intersystem crossing and internal conversion. An excitation intensity dependent fluorescence signal saturation was observed in steady-state fluorescence measurements for LOV1-WT, which is thought to be because of the formation of a long-lived intermediate flavin-C(4a)-cysteinyl adduct in the triplet state (few microseconds triplet lifetime, adduct lifetime around 150 s). No photobleaching was observed for LOV1-C57S, because no thiol group is present in the vicinity of FMN for an adduct formation.  相似文献   

17.
The Bacillus subtilis protein YtvA, related to plant phototropins (phot), binds flavin mononucleotide (FMN) within the N‐terminal light, oxygen and voltage (LOV) domain. The blue light‐triggered photocycle of YtvA and phot involves the reversible formation of a covalent photoadduct between FMN and a cysteine (cys) residue. YtvA contains a single tryptophan, W103, localized on the LOV domain and conserved in all phot‐LOV domains. In this study, we show that the fluorescence parameters of W103 in YtvA‐LOV are markedly different from those observed in the full‐length YtvA. The fluorescence quantum yields are ca 0.03 and 0.08, respectively. In YtvA‐LOV, the maximum is redshifted (ca 345 vs 335 nm) and the average fluorescence lifetime shorter (2.7 vs 4.7 ns). These data indicate that W103 is located in a site of tight contact between the two domains of YtvA. In the FMN‐cys adduct, selective excitation of W103 at 295 nm results in minimal changes of the fluorescence parameters with respect to the dark state. On 280 nm excitation, however, there is a detectable decrease in the fluorescence emitted from tyrosines, with concomitant increase in W103 fluorescence. This effect is reversible in the dark and might arise from a light‐regulated energy transfer process from a yet unidentified tyrosine to W103.  相似文献   

18.
An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.  相似文献   

19.
Strongly spin-polarized 13C NMR lines have been observed upon photoexcitation of FMN-binding LOV domains from the blue-light receptor phototropin. Their origin can be rationalized in terms of intermediate radical-pair spin chemistry. Due to hyperfine-selective branching into singlet and triplet products of different lifetime, nuclear spin polarization builds up on nuclei that possess high electron-spin density in the radical state. By examining point-mutated LOV domains of phototropin, spin-polarized 13C NMR signals in emission arising from 13C nuclei at natural abundance in the apoprotein can be unambiguously assigned to a tryptophan residue that is located at a distance of about 14 A from the FMN cofactor and that undergoes photoinduced electron transfer to the flavin. This demonstrates the potential of photo-CIDNP in unraveling reactive intermediates in protein function.  相似文献   

20.
The facultatively phototrophic purple bacterium Rhodobacter sphaeroides 2.4.1 harbors a LOV (light, oxygen and voltage) domain protein, which shows a particular structure. LOV domains perceive blue light by a noncovalently bound flavin and transmit the signal to various coupled output domains. Proteins, that harbor a LOV core, function e.g. as phototropins or circadian clock regulators. Jα helices, which act as linker between the LOV core and the output domain, were shown to be involved in the light-dependent activation of the output domain. Like PpSB2 from Pseudomonas putida , the LOV domain protein of R. sphaeroides is not coupled to an effector domain and harbors an extended C-terminal α helix. We expressed the R. sphaeroides LOV domain recombinantly in Escherichia  coli . The protein binds an FMN as a cofactor and shows a photocycle typical for LOV domain containing proteins. In R. sphaeroides , we detected the protein as well in the cytoplasm as in the membrane fraction, which was not reported for other bacterial LOV domain proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号