首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海堤越浪的数值模拟   总被引:9,自引:0,他引:9  
基于RANS方程和两方程湍流模型,采用有限体积法,将人射波波场作为人工的分布源项加人动量方程,提出了适用于VOF方法的源造波一消波技术。通过对行波及驻波的计算,分别考察了数值波浪水槽前端及末端消波段的有效性。在本文建立的数值波浪水槽内对规则波在海堤上爬高和越浪过程进行了数值模拟,并将计算结果与现有实验结果进行了比较。验证计算结果表明,数值模拟结果较好地复演了海堤越浪过程。为了研究模型尺度对越浪量的影响,文中设计了一组满足重力相似但具有不同几何比尺的数值实验模型。系列数值实验结果表明,若按重力相似换算越浪量,计算结果与实验预报值间的偏差随模型比尺的增大和堤前波浪破碎强度的增强而增大,建议在进行越浪物理模型实验时需进一步考虑模型比尺对原型预报值的影响。  相似文献   

2.
Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX $+$ traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large–scale explosions of intermediate strength $(10\, < \Delta {p}/{p}_0 \lesssim \, 0.02)$ gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be $1.25 \pm 0.94$ J and the average TNT equivalent was found to be $0.3$ . The repeatability in generating these micro-blast waves using the Nonel tube was very good $(\pm 2~\%)$ and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.  相似文献   

3.
H. Barik  A. Chatterjee 《Shock Waves》2007,16(4-5):309-320
The length scale criteria is widely accepted as an explanation for transition and hence existence of different shock wave reflection configurations in pseudo-steady flows. However, there has not been any attempt to validate this criteria using information obtained from a time-dependent numerical simulation. A high resolution time-dependent numerical simulation in pseudo-steady flow is carried out in the present work. Time-dependent numerical data is used to calculate flow features in a laboratory frame of reference to verify validity of the length scale criteria for existence of different shock wave reflection configurations in pseudo-steady flow. This analysis is then extended to the study of unsteady shock wave reflection configurations in shock–vortex interactions. It is shown that the existence of regular reflection (RR) and Mach reflection (MR) configurations in an unsteady flowfield resulting from shock–vortex interactions can also be explained locally based on limiting conditions similar to that prescribed by the length scale criteria for pseudo-steady flow.
  相似文献   

4.
Shape of a shock wave front diffracting on a perforated wall   总被引:2,自引:0,他引:2  
 The shape of a shock wave front diffracting on a perforated wall is determined by comparing numerical data and experimental findings. Experiments were conducted in a 60 mm×150 mm cross sectional area shock tube equipped with a double-exposure holographic interferometer. The numerical simulation was conducted using a TVD upwind finite difference scheme. First, a discharge coefficient for the mass flow through the perforations was determined by comparing the numerical results with those obtained using a simplified quasi-one-dimensional analysis. This value agreed well with the experimentally obtained value. Finally, the shape of a backward inclined incident shock wave over a perforated wall was successfully determined by employing this discharge coefficient and the numerical result. Received: 17 March 1995/Accepted: 13 August 1997  相似文献   

5.
Evolution of unidirectional nonlinear wave groups with wide spectra is studied experimentally and numerically. As an example of such an evolution, focusing of an initially wide wave train that is modulated both in amplitude and in frequency, to a single steep wave at a prescribed location along the laboratory wave tank is investigated. When numerous frequency harmonics arrive at the focusing location in phase, a very wave steep single emerges. The experimental study was carried out in two wave flumes that differ in size by an order of magnitude: a 330 m long Large Wave Channel in Hanover, and in 18 m long Tel-Aviv University wave tank. The spatial version of the Zakharov equation was applied in the numerical simulations. Detailed quantitative comparison is carried out between the experimental results and the numerical simulations. Spectra of the 2nd order bound waves are calculated using the theoretical model adopted. It is demonstrated that with the contribution of bound waves accounted for, a very good agreement between experiments and simulations is achieved.  相似文献   

6.
An experimental and numerical study was made of shock wave transition over slitted wedges. Experiments were conducted in a shock tube by using double exposure holographic interferometry. Shock Mach numbers ranged from 1.07 to 3.03 in air. Slitted wedge models having perforation ratios of 0.34 and 0.4 were installed in the test section. The critical transition angle was obtained analytically by the shock polar analysis where effects of boundary conditions, wall suction, and surface roughness were empirically taken into account. As the results, it was found that for stronger shock waves and a perforation ratio of 0.4, the critical transition angle was decreased by about 10° in comparison to the detachment criterion. A flow visualization study clarified various wave interaction mechanisms associated with the wall suction. The critical transition angle was successfully explained by the shock polar analysis. The PLM numerical simulation was also conducted. The numerical result agreed very well with the experimental findings.  相似文献   

7.
This paper focuses on the fluid boundary separation problem of the conventional dynamic solid boundary treatment (DSBT) and proposes a modified DSBT (MDSBT). Classic 2D free dam break flows and 3D dam break flows against a rectangular box are used to assess the performance of this MDSBT in free surface flow and violent fluid–structure interaction, respectively. Another test, water column oscillations in a U‐tube, is specially designed to reveal the applicability of dealing with two types of particular boundaries: the wet–dry solid boundary and the large‐curvature solid boundary. A comparison between the numerical results and the experimental data shows that the MDSBT is capable of eliminating the fluid boundary separation, improving the accuracy of the solid boundary pressure calculations and preventing the unphysical penetration of fluid particles. Using a 2D SPH numerical wave tank with MDSBT, the interactions between regular waves and a simplified vertical wave barrier are simulated. The numerical results reveal that the maximum horizontal force occurs at the endpoint of the vertical board, and with the enlargement of the relative submerged board length, the maximum moment grows linearly; furthermore, the relative average mass transportation under the breakwater initially increases to 11.14 per wave strike but is later reduced. The numerical simulation of a full‐scale 3D wave barrier with two vertical boards shows that the wave and structure interactions in the practical project are far more complicated than in the simplified 2D models. The SPH model using the MDSBT is capable of providing a reference for engineering designs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The focus of present study is on how to generate solitary waves as pure as possible by using a piston type wave maker. A meshless numerical model, which can simulate the trajectories of fluid particles in a wave motion exerted by the wave paddle, is established for the purpose of present study. The present numerical model is verified by the comparison with experimental data before it is employed to the focused problem. Various wave paddle motions are considered. The results show that solitary waves generated by applying Fenton’s solitary solution to the paddle motion proposed by Goring are purer than those generated by other paddle motions.  相似文献   

9.
An experimental and numerical study was made of converging cylindrical shock waves. The goal of the present study was to clarify the movement and instability of the converging cylindrical shock waves. Experiments were conducted in an annular shock tube of 230 mm o.d. and 210 mm i.d. connected to a cylindrical test section of 210 mm diameter. Double exposure holographic interferometry was used to visualize the converging cylindrical shock waves. Incident shock Mach numbers ranged between 1.1 and 2.0 in air. A numerical simulation was conducted using the TVD finite difference scheme. It was found in the experiments that although the initial shock wave configuration looked cylindrical, it was gradually deformed with propagation towards the center and finally showed mode-four instability. This is attributable to the existence of initial disturbances which were introduced by the struts which supported the inner tube of the annular shock tube. This trend was significant for stronger shock waves indicating that at the last stage of shock wave convergence the initial perturbations of the converging cylindrical shock wave were amplified to form the triple point of Mach reflection. The numerical results correctly predicted the experimental trend.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

10.
A numerical model of pollutant transport acted by water waves on a shallow‐water mild‐slope beach is established in this study. The numerical model is combined with a wave propagation model, a multiple wave‐breaking model, a wave‐induced current model and a pollutant convection–dispersion model. The wave propagation model is based on the higher‐order approximation of parabolic mild‐slope equation which can be used to simulate the wave refraction, diffraction and breaking in a large area of near‐shore zone combined with the wave‐breaking model. The wave‐induced current model is established using the concept of the radiation stress and considering the effect of bottom resistance caused by waves. The numerical model is verified by laboratory experiment results of regular and irregular waves over two mild beaches with different slopes. The numerical results agree well with experimental results. The numerical model has been applied in the near‐shore zone of Bohai bay in China. It is concluded that pollutant transport parallel to the shoreline due to the action of waves, which will induce serious pollution on the beach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Acoustic properties of an additive-manufactured SiC scaffold with hexagonal symmetry fabricated by the robocasting method are studied both numerically and experimentally. The numerical analysis is based on the finite element method (FEM) using Bloch boundary conditions. The calculations show both angular and frequency dispersion of the acoustic waves with wavelengths comparable to the spacing between the rods, i.e., on a millimeter scale, indicating interesting acoustic properties in the MHz range. The dispersion character leads to focusing of the energy propagation into the directions of the rods of the hexagonal structure. This is illustrated by modal-based calculations of the propagation of longitudinal and out-of-plane shear wave packets with a dominant wavelength. The experimental analysis consists of two steps, the measurement of the resonant spectrum and shear wave propagation character. The measured resonant spectrum is in good agreement with the one calculated using numerically obtained low-frequency properties of the structure, also showing the quality of the overall manufactured structure. The time-domain measurement shows significant changes in the energy propagation between low and high frequencies, as predicted by FEM calculations.  相似文献   

12.
A hybrid wave model is developed for simulation of water wave propagation from deep water to shoreline. The constituent wave models are the irrotational, 1‐D horizontal Boussinesq and 2‐D vertical Reynolds‐averaged Navier–Stokes (RANS). The models are two‐way coupled, and the interface is placed at a location where turbulence is relatively small. Boundary conditions on the interfacing side of each model are provided by its counterpart model through data exchange. Prior to the exchange, a data transformation step is carried out due to the differences in physical variables and approximations employed in both models. The hybrid model is tested for both accuracy and speedup performance. Tests consisting of idealized solitary and standing wave motions and wave overtopping of nearshore structures show that: (1) the simulation results of the current hybrid model compare well with the idealized data, experimental data, and pure RANS model results and (2) the hybrid model saves computational time by a factor proportional to the reduction in the size of the RANS model domain. Finally, a large‐scale tsunami simulation is provided for a numerical setup that is practically unapproachable using RANS model alone; not only does the hybrid model offer more rapid simulation of relatively small‐scale problems, it provides an opportunity to examine very large total domains with the fine resolution typical of RANS simulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
对平面激波和单个矩形障碍物作用的过程进行了数值模拟,研究了反射产生的上行爆轰波在下游可燃气体中形成爆轰波的过程。数值结果表明,下游爆轰波形成过程主要有2种模式:爆轰波直接绕射和绕射波在上壁面反射,这和已有的实验结果是一致的。通过研究下游爆轰波的形成过程受入射激波马赫数、混合气体的压力和管道尺度的影响,分析了上游爆轰波向下游传播的波动力学过程,讨论了2种形成过程的作用规律和控制因素,阐明了下游爆轰波的形成规律。  相似文献   

14.
冲击压缩下玻璃样品后自由表面速度的过冲现象   总被引:1,自引:0,他引:1  
实验发现当飞片碰撞玻璃样品产生的冲击载荷超过一定值后 ,玻璃样品后自由表面速度时程曲线上有过冲现象 ,即速度上升到最大值后 ,立即开始下降 ,其时间的开始部分类似于三角波。通过高速摄影和VISAR等测试手段对这一现象进行了较系统的研究 ,发现其与玻璃样品后自由表面附近的破碎有关 ,建立了描述这一破坏现象的损伤演化方程 ,并进行了数值模拟。计算结果和实验结果吻合 ,表明对这个现象的解释是合理的。  相似文献   

15.
A coupled level set and volume-of-fluid (CLSVOF) method is implemented for the numerical simulations of interfacial flows in ship hydrodynamics. The interface is reconstructed via a piecewise linear interface construction scheme and is advected using a Lagrangian method with a second-order Runge–Kutta scheme for time integration. The level set function is re-distanced based on the reconstructed interface with an efficient re-distance algorithm. This level set re-distance algorithm significantly simplifies the complicated geometric procedure and is especially efficient for three-dimensional (3D) cases. The CLSVOF scheme is incorporated into CFDShip-Iowa version 6, a sharp interface Cartesian grid solver for two-phase incompressible flows with the interface represented by the level set method and the interface jump conditions handled using a ghost fluid methodology. The performance of the CLSVOF method is first evaluated through the numerical benchmark tests with prescribed velocity fields, which shows superior mass conservation property over the level set method. With combination of the flow solver, a gas bubble rising in a viscous liquid and a water drop impact onto a deep water pool are modeled. The computed results are compared with the available numerical and experimental results, and good agreement is obtained. Wave breaking of a steep Stokes wave is also modeled and the results are very close to the available numerical results. Finally, plunging wave breaking over a submerged bump is simulated. The overall wave breaking process and major events are identified from the wave profiles of the simulations, which are qualitatively validated by the complementary experimental data. The flow structures are also compared with the experimental data, and similar flow trends have been observed.  相似文献   

16.
In this paper, a numerical and experimental investigation of the evolution of a transmitting shock wave and its associated primary vortex loop, which are discharged from the open end of a square cross-sectional tube, is described. The experiments were conducted in the square tube connected to a diaphragmless shock tube and the flowfield was visualized from the axial direction with diffusive holographic interferometry. The numerical simulations were carried out by solving the three-dimensional Euler equations with a dispersion-controlled scheme. The numerical results were displayed in the form of interferograms to compare them with experimental interferograms. Good agreement between the numerical and experimental results was obtained. More detailed numerical calculations were carried out, from which the three-dimensional transition of the shock wave configuration from an initial planar to a spherical shape and the development of the primary vortex loop from a square shaped to a three-dimensional structure were clearly observed and interpreted. Received 29 January 1998 / Accepted 22 May 1998  相似文献   

17.
We propose to find out numerical solutions of a travelling shock wave in condensed mixtures by using a direct numerical simulation. Condensed multiphase materials under shock wave conditions are mechanically characterized by a unique pressure and a unique velocity. In this study, the mixture is considered as a collection of grains separated by interface between each material: this problem of interfaces is solved by a diffuse interface method. The results will be compared to existing one-dimensional numerical models, analytical solutions and also experimental data. The volume fraction (or the phase temperature) is not measured in experiments and it is then important to verify the behaviour of a phase quantity through various methods. A non-monotonous evolution of the volume fraction is obtained with analytical solution as well as numerical simulation.   相似文献   

18.
Z. Tan  W. Zhang  C. Cho  X. Han 《Shock Waves》2014,24(5):545-551
The failure mechanism of a concrete slab–soil double-layer structure subjected to an underground explosion was investigated by experimental and numerical methods in this paper. Two underground explosion depths of 150 and 350 mm were tested. The typical failure modes such as the conoid spall of concrete, the bulge of the concrete slab and the cavity in the soil were obtained experimentally. Numerical simulations of the experiments were performed using a hydrodynamic code to analyze the effects of both the stress wave and the expansion of the blast products. Based on the experimental and numerical results, the effects of explosive depth, blast wave front and expansion of the blast products on the failure modes and failure mechanisms were discussed. The underground explosion process at different explosion depths was also analyzed. The results show that attenuation of the stress wave in the soil is significant. The blast wave front and the expansion of the blast products play different roles at different explosion depths. At the explosion depth of 150 mm, the failure mode is mainly caused by a point load induced by the blast wave front, whereas at the depth of 350 mm a sphere-shaped load resulting from the expansion of the blast products is a key factor for failure.  相似文献   

19.
相比于单相介质理论而言,双相介质理论更接近实际地层的真实情况,因此在地球物理勘探、地震工程和岩土动力学等领域有着广泛的应用。传统的波动方程数值解法由于本身固有的不足不利于求解诸如双相介质波动方程等复杂的非线性和不规则性问题;而小波方法则由于自身良好的特性可以用来构建解决此类问题的自适应性算法。本文详细推导了双相介质P波波动方程的有限差分矩阵表示形式,利用小波变换将其转移到小波域,设置阈值形成更为稀疏的迭代矩阵以构建自适应算法,从而达到减少计算量,增加地震波场数值模拟灵活性和准确性的目的。地球物理勘探的数值模拟实例验证了方法的有效性。  相似文献   

20.
The fluid forces resulting from wave interaction with large submerged structures may be calculated using numerical procedures based on the solution of the associated boundary-value problem. In this paper, the analysis of wave interaction with a fixed submerged object of arbitrary cross-section and infinite length using a two-dimensional boundary value formation based on linear diffraction theory is summarized. Subsequently, the application of the boundary element method to obtain a solution is presented. The numerical considerations are emphasized with particular reference to computational efficiency. Numerical results are presented in the form of dimensionless wave force plots for various structural shapes. In the case of a bottom-seated half cylinder, for which there exists a closed-form solution, comparisons are made between results generated using both boundary element and equivalent finite element approaches. In the case of a submerged cylinder, comparisons are made between boundary element derived values and experimental results. The boundary element results compare well with both the closed-form solution and the experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号