首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A finite volume computational scheme to solve the Navier-Stokes equations for the laminar flow fields of partially enclosed axial and radial jets impinging on a flat plate has been devised and tested. This scheme is based on the SIMPLEC technique. However, because of the backflow at the ‘outflow’ boundary, the SIMPLEC pressure correction technique has to be modified. The need for this modification, necessitated by the convergence failure, showed the ‘hidden’ pressure boundary condition of SIMPLE-type techniques. Test computations with the present scheme for flows in a channel with a built-in cylinder show that the location of the exit boundary affects very slightly the separated flow behind the cylinder. Computed Squire jet flows compare quite well with the available analytical solution. Finally, impinging radial jets have been computed for different Reynolds numbers. The results show the critical Reynolds number below which a steady solution is obtained and above which periodic and eventually chaotic flows result.  相似文献   

2.
3.
The similarity solution of the radial turbulent jet with weak swirl is discussed and a new solution of the radial turbulent jet with swirl is proposed without restrictions assumed in the weak swirl solution.Nomenclature e swirl parameter - k experimental constant - l non-negative constant - M, M , N, P integral invariants - q velocity component in -direction - q max maximum velocity component in -direction - u radial velocity component - u max maximum radial velocity component - v axial velocity component - w peripheral velocity component - w max maximum peripheral velocity component - x radial coordinate - y transverse coordinate - angle introduced in (28) - characteristic width of a jet - (x, y) similarity variable (scaled x and y coordinate) - molecular kinematic viscosity - T eddy kinematic viscosity - tangential coordinate - fluid density - turbulent shear stress in -direction - xy , y components of turbulent shear stress tensor - (x, y) stream function  相似文献   

4.
The similarity solution of the radial turbulent jet with weak swirl is discussed and a new solution of the radial turbulent jet with swirl is proposed without restrictions assumed in the weak swirl solution.  相似文献   

5.
Summary A general similarity solution suggested by Watson for the problem of the laminar, radial, free-jet with swirl has been previously discussed by Riley who also calculated the order to which the solution was valid. That problem is considered in more detail here and higher order terms are given. It is shown that a perturbation scheme for the stream function consisting of a series of inverse powers of and which uses the asymptotic similarity solution as the basic solution is inadequate, and a modification to the series so as to include terms like n (ln ) m must be adopted in order to satisfy the boundary conditions. It is also shown that the general similarity solution may be obtained from the asymptotic series representing the general case with swirl for certain special values of the free constants and also for the no-swirl or free-jet problem. The asymptotic series is given to order –13 for the case of swirl and to order –29 when there is no swirl.  相似文献   

6.
7.
聚能射流侵彻厚靶时,对靶材同时进行轴向和径向挤压进而发生轴向侵彻和径向扩孔。本文中基于聚能射流侵彻可压缩模型并结合Szendrei-Held扩孔方程,推导给出考虑弹/靶材料可压缩性的聚能射流扩孔方程。为简化完整可压缩模型繁琐的计算过程,又基于Murnaghan状态方程给出可压缩模型的近似解。与水中聚能射流扩孔的实验研究对比分析,表明该模型预测优于Szendrei-Held扩孔方程。模型分析表明,射流半径、驻点压力、靶材强度、驻点处靶材密度以及聚能射流速度是影响聚能射流扩孔的主要因素。本文模型可以更准确地预测聚能射流侵彻可压缩性较强的靶材的扩孔情况。相关工作可为含液密闭结构干扰聚能射流侵彻提供理论基础。  相似文献   

8.
The flow field of a radial wall jet created by the impingement of a round synthetic jet normal to a flat surface was characterized using hot-wire anemometry. In the synthetic wall jets the width of the outer layer was observed to increase linearly with the radial distance along the wall, while the local maximum velocity varied inversely. The synthetic wall jet exhibits self-similar behavior as distinguished by the collapse of the mean and rms velocity profiles when normalized by the outer layer scaling variables. Increasing the actuator driving amplitude at a fixed frequency (i) increased the growth rate of the outer layer, and (ii) decreased the decay rate of the local velocity maximum. The flow field of the synthetic wall jet was dominated by vortical structures associated with the actuator driving frequency, and harmonics connected with the interaction of the produced vortex structures. For the actuator conditions investigated, neither the classical laminar nor fully turbulent analytical solutions for continuous wall jets were amenable to modeling the synthetic wall jet profile due to the transitional and unsteady nature of the synthetic wall jet.  相似文献   

9.
The experimental and theoretical researches on the radial jet of two opposed jets have been carried out in this paper. The radial velocities of opposed jets with various exit velocities, nozzle diameters and nozzle separations were measured experimentally by a hot-wire anemometer (HWA). The results show that, the normalized radial velocities are self-similar across various radial sections at r ? 1.5D and the radial velocity profiles can be described by a Gaussian distribution function. The half-width increases linearly with increasing radial distance at r ? 1.5D, and spreading rates of radial jet are about 0.121. The normalized radial velocity at impingement plane increases firstly, and then decreases with the increasing normalized radial distance. The normalized radial velocity is independent on nozzle diameter, nozzle separation and exit velocity. The maximum radial velocity at impingement plane is proportional to the exit velocity, and it is inversely proportional to the 0.551th power of the normalized nozzle separation. The position of the maximum radial velocity increases with the nozzle separation at L/D < 1, and keeps invariant at L/D ? 1.  相似文献   

10.
Results of an experimental study and numerical simulation of self-oscillations of a supersonic radial jet exhausting from a plane radial nozzle into an ambient space are reported. It is demonstrated that flexural oscillations develop in the jet, leading to its destruction. Feedback ensured by acoustic waves in the gas surrounding the supersonic jet is found to play a key role in the emergence of self-oscillations.  相似文献   

11.
A computational fluid dynamics technique has been used to predict the likely concentration levels along a pipe wall of chemicals injected radially from a nozzle. No published empirical data appear to be available, despite the importance of this subject in protecting pipe walls in the vicinity of the dosing point if the chemicals and pipe materials are incompatible. Validation of predictions is by comparison with experimental data for other parameters related to the flow. Where possible, results have been analyzed and presented in dimensionless form so that the article can act as a more generally useful design guide.  相似文献   

12.
The convective heat transfer between a circular free surface impinging jet and a solid surface has been studied numerically. The thin liquid film formed on the surface has been assumed to be in non-turbulent free surface flow. The effects of surface tension, viscosity, gravity and heat transfer between the film flow and the solid surface have been taken into account. The flow structure on a non-heated surface has been investigated first. Next, the steady-state flow structure in the liquid film as well as the heat transfer has been examined. The predicted results have been compared with experimental data for the purpose of validating the analysis. The hydrodynamics of the liquid film and the heat transfer processes have been investigated numerically to understand the physics of the phenomena. Received on 5 October 1998  相似文献   

13.
Recently, Lee et al. (Arch Appl Mech 81:397–402, 2011) proposed a new and very interesting formula to describe the velocity profile of a submerged jet flow by introducing a radial adjusting coefficient depending on the jet flow direction. Under some simplifying assumptions (granting convergence), the authors were able to express the spreading width of the jet flow analytically in terms of infinite series. In this short note, we show that such simplifying assumptions can be relaxed and exact solutions for the spreading width of the jet flow can be obtained: Such results are computationally more efficient and are able to better demonstrate the qualitative features of the solutions.  相似文献   

14.
Coatings of pure chiral nematic liquid crystals are known to change colour under different levels of surface shear stress. In this study, the liquid crystal was used to provide information about flow separation and reattachment on both a two-dimensional aerofoil and a delta wing. The tests were carried out at a free-stream velocity of 28 m/s and a number of incidence angles. The Reynolds numbers based on the central chord length of the models were 200,000 and 270,000 for the aerofoil and delta wing models, respectively. The study showed that locations of boundary layer separation and reattachment can be identified from spatial variations in the surface colour; the agreement between the results and those obtained using surface oil flow was good. Issues relating to interpretation of the crystal colour pattern and the limitation of this technique in detection of flow separation were also discussed.  相似文献   

15.
A forward facing spike attached to a hemisphere-cylinder reduces the aerodynamic drag and the heat flux at supersonic and hypersonic Mach numbers. A numerical simulation is carried out to examine the effects of freestream Mach number on the flowfield and the heat transfer over the spiked blunt-body. Axisymmetric compressible Navier–Stokes equations are solved using a finite volume discretization in conjunction with a multistage Runge–Kutta time stepping method. Lengths of the separated region on the spike are influenced by the freestream Mach number. The computed results show that the peak heat flux on the nose of the blunt-body is also influenced by the freestream Mach number. The peak pressure and the wall heat flux on the blunt-body increases with increasing freestream Mach number. The computed results are reasonable in agreement with experimental data from the literature. Received on 1 July 1999  相似文献   

16.
A robust method to detect the mean turbulent reattachment location with a flush surface-mounted array of hot-film sensors is presented. The method has the advantages of requiring no sensor calibration, no dependence on the presence of a dominant frequency or oscillation period and it requires no qualitative interpretation of sensor time-series signals. The method is developed by investigating the flow downstream of a backward-facing step. Through computation of the time of flight of convected flow disturbances over adjacent sensor pairs, the method offers a quantitative resolution of the mean location of reattachment for turbulent flows.Nomenclature AR backward-facing step aspect ratio; =w/h - f frequency - Gpp(f) autospectral density function - Gpq(f) cross-spectral density function - h step height - Ma Mach number - nd number of ensembles - Rec Reynolds number based on external velocity and body chord - Reh Reynolds number based on external velocity and step height - Re Reynolds number based on external velocity and momentum thickness - t time of flight - u mean streamwise velocity component - Uc phase velocity - U freestream velocity - w span of backward-facing step - x streamwise coordinate - xR mean reattachment length - y wall-normal coordinate - z spanwise coordinate - x adjacent hot-film sensor spacing - R random error in phase estimates - linear coherence spectrum - pq(f) phase spectrum - momentum thickness - HFA hot-film array - LDV laser Doppler velocimetry  相似文献   

17.
The standard backward‐facing step flow problem is solved for steady state laminar case using stream function‐vorticity method. The steady state results are obtained as the asymptotic solution of the transient formulation. The primary reattachment length is studied and the discrepancy in the v velocity is reported. A method for determining appropriate locations for comparison is proposed. The energy equation is solved and found to be in good agreement with benchmark results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The important parameters that affect the reattachment length in an axisymmetric sudden-expansion flow are examined. It is found that inlet centerline turbulence stands out as the most important; namely increased inlet centerline turbulence causes the reattachment length to decrease.  相似文献   

19.
狭长结构拓扑优化   总被引:3,自引:0,他引:3  
通常的拓扑优化是在给定区域内,通过设计材料分布实现结构拓扑形式优化。对于设计区域的长和宽相近的平面问题,现行的方法可得到清晰的拓扑。但是,狭长结构的设计域具有大的长宽比。为了保证基结构包含足够多的拓扑形式,宽度方向要求有一定量的有限元分割,从而导致整体网格数和设计变量多、问题求解困难。本文提出了通过基本结构拼装的狭长结构拓扑优化方法,建立了以最小平均柔顺性密度为目标、同时设计材料分布和设计域几何尺度的基本结构的拓扑优化问题的数学提法和求解方法。利用所提出的问题提法和求解方法,设计了狭长悬臂梁的拓扑形式,讨论了危险截面的弯矩与剪力的相对值以及材料体积约束对拓扑形式的影响。数值结果表明,不同的弯矩与剪力的相对数值对应不同的拓扑形式,随着相对数值的增加,梁的拓扑形式由类桁架结构逐渐变成竖直立板加强的框架式结构。  相似文献   

20.
We present an extended finite element formulation for piezoelectric nanobeams and nanoplates that is coupled with topology optimization to study the energy harvesting potential of piezoelectric nanostructures. The finite element model for the nanoplates is based on the Kirchoff plate model, with a linear through the thickness distribution of electric potential. Based on the topology optimization, the largest enhancements in energy harvesting are found for closed circuit boundary conditions, though significant gains are also found for open circuit boundary conditions. Most interestingly, our results demonstrate the competition between surface elasticity, which reduces the energy conversion efficiency, and surface piezoelectricity, which enhances the energy conversion efficiency, in governing the energy harvesting potential of piezoelectric nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号