首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elution behaviors of the biogenic amines, histamine (HA) and its metabolite methyl histamine (MHA), were evaluated by means of on-column derivatization (OCD)-capillary electrochromatography (CEC) which employed a monolithic octadecylsilica (ODS) capillary column (20 cm of effective length x 50 microm of inner diameter). Five kinds of alkylthiols, e.g., 2- hydroxyethylthiol (or 2-mercaptoethanol (2-ME)), ethanethiol (ET), 1-propanethiol (1-PT), 2-methyl-1-propanethiol (2-MPT) and 1-butanethiol (1-BT) were separately presented at 5 mM each in the OCD-CEC separation run buffer consisting of 60% acetonitrile in 5 mM o-phthalaldehyde (OPA)-10 mM borate buffer (pH 10). When 2-ME was present in the run buffer solution, both derivatives corresponding to HA and MHA migrated separately, but closely together through the capillary column. Replacement of 2-ME with 1-BT in the run buffer solution caused a delay in their elution profiles on the electrochromatogram and the separation between those two peaks became remarkably improved. The elution times of HA and MHA followed the increase in alkyl chain length or hydrophobicity of thiol, 1-BT > 2-MPT > 1-PT > ET > 2-ME. Performance of on-line preconcentrations of HA and MHA was also evaluated by varying the electrokinetic injection voltage from 1 kV to 8 kV. The peak area counts corresponding to HA recorded about 50 times higher when 2 kV was applied for 240 s to a 0.1 mM HA solution than when 8 kV was applied for 5 s. This method was next applied to a sample of human urine spiked with HA and MHA at levels of 0.1 microM each. Although HA and MHA peaks were not identifiable among the peaks corresponding to the materials in the urine matrix when OPA/2-ME was employed in a run buffer for the OCD-CEC, the separation and identification of their peaks became possible by replacing 2-ME with 1-BT in the run buffer solution.  相似文献   

2.
The enantiomeric separation of ofloxacin enantiomers (OFLX) was achieved by using capillary electrophoresis partial-filled with Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) as chiral selectors. Experimental parameters, including the concentration of background electrolyte, applied voltage, length of the filled bacteria plug, and pH of the buffer, were intensively investigated. Baseline separation of OFLX could be achieved within 7 min by using E. coli and P. aeruginosa as chiral selectors under the following conditions: electrophoretic buffer composed of 10 mM phosphate buffer at pH 7.4, applied voltage at 15 kV, and the bacteria (6.0 × 10(8) cells/mL) were injected into the capillary by gravity with injection height of 17.5 cm for 180 s (E. coli), 300 s (P. aeruginosa), and 300 s (S. aureus), respectively. E. coli and P. aeruginosa had better chiral selectivity for OFLX than S. aureus, which was in good agreement with OFLX having better antimicrobial activity on Gram-negative rather than Gram-positive bacteria. A novel method was developed for the enantioselective separation of enantiomers using bacteria as chiral selectors, which provides a new approach for antimicrobials enantioselective analysis, chiral pharmacodynamics, and chiral pharmacokinetics studies.  相似文献   

3.
A new approach for simultaneous chiral and achiral separations by capillary zone electrophoresis is described. Two adjacent selector plugs, consisting of Tween 20 as an achiral and methyl-beta-cyclodextrin (CD) as a chiral selector, are employed and four related local anesthetics are used as model compounds. The principles of the partial filling technique, whereby the capillary is filled with the chiral selector solution followed by the micellar solution at different plug lengths and concentrations, prior to application of the solutes, was employed. During the run both capillary ends were dipped in a simple buffer, i.e., one without additives. The two separation media worked independently without any interaction. Separation of the solutes and their enantiomers was regulated by adjusting both the concentration and plug length (PL) of the micellar solution in the capillary, employing methyl beta-CD as chiral selector either at 38 or 76 mM. The solutes were separated on the basis of their affinity towards the micellar phase before they reached the methyl-beta-CD plug for enantioseparation. In the absence of the micellar plug, the enantiomers of prilocaine overlapped those of bupivacaine. The solutes and their enantiomers were completely separated by employing two adjacent plugs consisting of 100 mM Tween 20 solution (PL approximately 10 cm) and methyl-beta-CD solution at either 38 or 76 mM (PL approximately 30 cm).  相似文献   

4.
Lin CC  Liu CY 《Electrophoresis》2004,25(18-19):3216-3223
With 3-trimethoxysilylpropyl chloride as the spacer, a proline-coated capillary column was prepared for the capillary electrochromatographic (CEC) separation of amino acids by in-column derivatization. Nine standard mixtures, including aspartic acid, glutamic acid, valine, phenylalanine, alanine, isoleucine, leucine, tyrosine, and tryptophan, were injected. o-Phthalaldehyde (OPA), OPA/2-mercaptoethanol (2-ME) and OPA/N-acetylcysteine (NAC) in borate buffer were tested as the derivatizing agent. Among them, OPA (50 mM) in borate buffer (pH 9.5, 50 mM) gave the best performance. The formation of isoindole could be detected by UV detection. The sandwich-type injection was carried out in hydrostatic mode (10 cm) with the program R(10 s)S(10 s) R(10 s)W(10 min) with R, S, and W being the reagent, sample, and waiting times. Mesityl oxide, benzyl alcohol, and acetone showed some interaction with the column. A current monitoring method was used instead of the determination of the electroosmotic flow (EOF). The direction of EOF was from anode to cathode even under acidic condition lower than the pI value (6.31) of the bonded group due to some unreacted silanol groups. Some parameters including pH, nature, and concentration of the mobile phase and the effect of organic modifier with regard to the CEC separation were investigated. With the proline-coated column (75 (50) cm x 75 microm ID) the best separation was performed in phosphate buffer (pH 4.00, 100 mM) with an applied voltage of -15 kV. The established method was also compared with those precolumn derivatized prior to the separation with proline-coated column as well as with in-capillary derivatization and separation with a bare fused-silica column.  相似文献   

5.
Iqbal J  Burbiel JC  Müller CE 《Electrophoresis》2006,27(12):2505-2517
Fast and convenient CE assays were developed for the screening of adenosine kinase (AK) inhibitors and substrates. In the first method, the enzymatic reaction was performed in a test tube and the samples were subsequently injected into the capillary by pressure and detected by their UV absorbance at 260 nm. An MEKC method using borate buffer (pH 9.5) containing 100 mM SDS (method A) was suitable for separating alternative substrates (nucleosides). For the CE determination of AMP formed as a product of the AK reaction, a phosphate buffer (pH 7.5 or 8.5) was used and a constant current (95 microA) was applied (method B). The methods employing a fused-silica capillary and normal polarity mode provided good resolution of substrates and products of the enzymatic reaction and a short analysis time of less than 10 min. To further optimize and miniaturize the AK assays, the enzymatic reaction was performed directly in the capillary, prior to separation and quantitation of the product employing electrophoretically mediated microanalysis (EMMA, method C). After hydrodynamic injection of a plug of reaction buffer (20 mM Tris-HCl, 0.2 mM MgCl2, pH 7.4), followed by a plug containing the enzyme, and subsequent injection of a plug of reaction buffer containing 1 mM ATP, 100 microM adenosine, and 20 microM UMP as an internal standard (I.S.), as well as various concentrations of an inhibitor, the reaction was initiated by the application of 5 kV separation voltage (negative polarity) for 0.20 min to let the plugs interpenetrate. The voltage was turned off for 5 min (zero-potential amplification) and again turned on at a constant current of -60 microA to elute the products within 7 min. The method employing a polyacrylamide-coated capillary of 20 cm effective length and reverse polarity mode provided good resolution of substrates and products. Dose-response curves and calculated K(i) values for standard antagonists obtained by CE were in excellent agreement with data obtained by the standard radioactive assay.  相似文献   

6.
Using cyclodextrin capillary zone electrophoresis (CD-CZE), baseline separation of synthetic tetrahydronaphthalenic derivatives, potential melatoninergic compounds, was achieved. A method for the enantioresolution of these tetralins and determination of their enantiomeric purity was developed using anionic CDs (highly sulfated-CD or highly S-CD) as chiral selectors and capillaries dynamically coated with polyethylene oxide (PEO). Operational parameters such as the nature and concentration of the chiral selectors, buffer pH, organic modifiers, temperature and applied voltage were investigated. The use of charged CDs provides a driving force for our neutral compounds in the running buffer and enantiomeric resolution by inclusion of compounds in the CD cavity. The highly S-beta-CD was found to be the most effective complexing agent, allowing good enantiomeric resolution. The complete resolution of three tetralin compounds was obtained using 25 mM phosphate buffer at pH 2.5 containing 2.5% w/v of highly S-beta-CD at 25 degrees C with an applied field of 0.25 kV/cm. The apparent association constants of the inclusion complexes were calculated. This optimized method was validated in terms of linearity, sensitivity, accuracy and recovery. The enantiomeric purity for the three molecules was determined and the detection limit of enantiomer impurities is about 0.3-0.6%.  相似文献   

7.
Baseline separation of some new acyclic nucleosides which are potential antiviral agents was achieved using cyclodextrin capillary zone electrophoresis (CD-CZE). A method for the enantiomeric resolution of these compounds and determination of their enantiomeric purity was developed using anionic CDs (highly sulfated-CD or highly S-CD) as chiral selectors and capillaries, which were dynamically coated with polyethylene oxide (PEO). Operational parameters including (i) the nature and concentration of the chiral selectors, (ii) organic modifiers, (iii) temperature, and (iv) applied voltage were investigated. The use of charged CDs provides (i) a supplementary driving force for the compounds in a running buffer and (ii) enantiomeric resolution by inclusion of compounds in the CD cavity. The highly S-CD was found to be the most effective complexing agent and allowed good enantiomeric resolution. The complete resolution of five nucleoside analogs was obtained using 25 mM phosphate buffer, pH 2.5, containing either highly S-alpha-CD, S-beta-CD or S-gamma-CD at 30 degrees C with an applied field of 0.30 kV/cm. The apparent association constants of the inclusion complexes were calculated. The enantiomer migration order for the molecules investigated was determined and the detection limit of enantiomeric impurities was found to vary between 0.34 to 3.56 ng.mL(-1) for the first enantiomer.  相似文献   

8.
The novel antidepressant reboxetine, a selective norepinephrine reuptake inhibitor, is increasingly used in the treatment of different forms of major depression. Reboxetine is a chiral compound, and is marketed as a racemic mixture of (R,R)- and (S,S)-reboxetine; however, the pharmacokinetic and toxicological profiles of the two enantiomers are rather different. For this reason, a simple capillary electrophoretic method for the separation of reboxetine enantiomers has been developed. Sulfobutyl ether-beta-cyclodextrin was chosen as the chiral selector, and several parameters, such as cyclodextrin and buffer concentration, buffer pH and capillary temperature were investigated in order to obtain good separation and acceptable run times. Using an uncoated, fused-silica capillary (internal diameter 50 microm, total length 48.5 cm, effective length 40.0 cm) and a background electrolyte consisting of a pH 3.0, 100 mM phosphate buffer containing 1.25 mM cyclodextrin, reboxetine enantiomers were baseline separated (resolution > 4) with a voltage of 20 kV in less than 16 min. Since pure enantiomers of reboxetine were not available, they were obtained from the racemic powder by means of direct-phase, high-performance liquid chromatography and their identity confirmed by circular dichroism spectra.  相似文献   

9.
A new capillary electrophoretic method was developed for enantiomeric separation and optical impurity analysis of three synthetic 2,3-dihydroxy-3-phenylpropionate compounds using native beta-cyclodextrin (beta-CD) as chiral selector and borate as a background electrolyte. The separation was carried out in uncoated capillary (58.5 cm x 75 microm I.D., effective length 48.5 cm). The results showed that beta-CD as the chiral selector exhibited good enantioselectivity and the baseline separation was obtained at pH 9.8, 200 mM borate buffer containing 1.7% beta-CD at applied voltage 15 kV and capillary temperature 20 degrees C within 15 min. The precision of each tested compound was less than 1.0% at migration time and 5.0% in corrected peak area and the accuracy of the method was in the range of 98.7-105%. Furthermore, the developed method was successfully applied to the determination of the undesirable trace (2S,3R)-(+)-form impurity in the synthetic (2R,3S)-(-)-2,3-dihydroxy-3-phenylpropionate samples.  相似文献   

10.
The application of capillary electrophoresis for separation of penicillin V and its impurities was investigated. The phosphate-borate buffer supplemented with sodium dodecyl sulfate (SDS) 20.0 g/L (69 mM) and pentanesulfonic acid sodium salt (PS) 2.2 g/L (12.5 mM) adjusted to pH 6.3, and current voltage 15 kV seem to provide optimal conditions for this aim. The resolution between penicillin V and each impurity was very good. The statistical analysis of phenoxymethylpenicillin V assay showed no significant differences between the results obtained by CE and HPLC methods.  相似文献   

11.
A method for the separation of twelve monomethyl-substituted benz[a]anthracene isomers using poly-(sodium undecylenic sulfate) (poly-SUS) surfactant by means of electrokinetic capillary chromatography (EKC) is described. Several parameters such as concentration of acetonitrile (ACN), pH, as well as applied voltage were studied to optimize the EKC separation. ACN at a concentration of 35% v/v, 12.5 mM phosphate-borate buffer, 30 kV with 0.5% w/v poly-SUS at a pH of 9.5 provided a resolution of a mixture of nine out of twelve methylbenz[a]anthracene (MBA) isomers in 50 min. The results of this study suggest that molecular length of MBA rather than length-to-breath ratio plays an important role in the elution order of some isomers.  相似文献   

12.
The separation of two highly negatively charged enantiomeric organic disulfates containing two chiral centers was investigated by capillary electrophoresis using cyclodextrin based chiral selectors added to the run buffer. The optimum separation for the enantiomers was achieved in less than 3 min at 25 degrees C with a run buffer of 10 mM glycine pH 2.4 and 5 mM QA-beta-CD, which is a positively charged quaternary ammonium beta-cyclodextrin derivative. The method resulted in baseline resolution, excellent linearity, and highly reproducible migration times allowing facile evaluation of the enantiomeric purity of the individual isomers. Detection limits for the enantiomeric pair were determined to be 0.3 ng/microl (S/N = 3). The nature of the selector-enantiomer interaction and a quantitative measurement of the apparent stability constants that governed chiral discrimination of the enantiomers with QA-beta-CD were also investigated by UV-Vis spectroscopy and electrospray ionization mass spectrometry.  相似文献   

13.
A practical chiral CE method, using sulfated‐β‐CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused‐silica capillary of (effective length 40 cm) × 50 μm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated‐β‐CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS‐glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%).  相似文献   

14.
Micellar electrokinetic chromatography (MEKC) was successfully and conveniently applied to the chiral separation with the addition of cyclodextrins (CDs) as chiral selector to the running buffer. Chiral separation depended on the type of CD; in particular, beta-CD was effective for the chiral separation of racemorphan. We investigated the optimal conditions of type and concentration of CD as chiral selector for the routine enantiomeric separation of racemorphan with good reproducibility. The effects of other parameters such as buffer pH and detection wavelength were also investigated to obtain the optimum conditions for the enantiomeric separation of racemorphan. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used for confirmation of racemorphan. The optimal conditions for enantiomeric separation of the racemorphan were as follows: 50 mM borate buffer at pH 9.4 with 50 mM SDS, 10 mM beta-CD and 20% 1-propanol, 57 cm x 50 microns fused-silica capillary column, and UV detection at 192 nm. Based on the developed method, racemorphan in human urine was also separated and determined using solid-phase extraction and MEKC.  相似文献   

15.
A capillary electrophoresis (CE) method has been developed that allows the separation and estimation of primaquine enantiomers using hydroxypropyl-gamma-cyclodextrin (HP-gamma -CD) as a chiral selector. The influence of chemical and instrumental parameters on the separation, such as type and concentration of CD, buffer concentration, buffer pH, applied voltage, capillary temperature, and injection time, were investigated. Good separation of the racemic mixture of primaquine was achieved using a fused-silica capillary (52.5 cm effective length x 50 microm id) and a background electrolyte composed of tris-phosphate buffer solution (50 mM, pH 2.5) containing 15 mM HP-gamma-CD as a chiral selector. The recommended applied voltage, capillary temperature, and injection time were 15 kV, 25 degrees C, and 6 s, respectively. Within-day and interday reproducibility of peak area and migration time gave relative standard deviation values ranging from 1.05-3.30%. Good recoveries (range of 96.8-104.9%) were obtained from the determination of placebos that were spiked with 0.25-1.00 mg/L primaquine. The proposed CE method was successfully applied to the assay of primaquine diphosphate in pharmaceutical formulations (tablets).  相似文献   

16.
A method for the quantitative analysis of colistin sulfate by capillary zone electrophoresis is described. Since colistin components have five free amino groups, they tend to adsorb onto the capillary wall and cause peak tailing. It was found that triethanolamine (TEA)-phosphate buffer at pH 2.5 was useful to reduce such adsorption. Methyl-beta-cyclodextrin (M-beta-CD) and 2-propanol (IPA) were found necessary for selectivity enhancement. In order to optimize the separation parameters and predict the method robustness, a central composite design was performed including three variables, namely concentration of M-beta-CD, TEA, and IPA. The effects of capillary length and applied voltage on separation were also investigated. The optimal conditions established were: 140 mM TEA-phosphate buffer containing 5 mM M-beta-CD and 6% v/v IPA, a capillary with 55 cm total length (50 microm inner diameter, 47 cm from inlet to detection window) and 24 kV applied voltage. The method was found to be robust when the variables were changed in the following range: 4-6 mM M-beta-CD, 5-7% v/v IPA, and 130-150 mM TEA. Further, the linearity, limit of detection (LOD), and limit of quantitation (LOQ), as well as repeatability for both colistin A and B were examined and three commercial samples were quantitatively analyzed.  相似文献   

17.
Summary The partial filling technique (PFT) in capillary electrophoresis (CE) is an efficient system where, only 50–800 nanolitres of a chiral selector solution needs to be added to each run. PFT is especially applicable when these additives to the background electrolyte (BGE) are expensive or absorb UV light. The selector dissolved in the BGE is applied to the capillary as a plug, shorter than the effective length of the capillary, prior to application of the analyte. During the run both ends of the capillary are connected to the BGE. The applied plug and the analyte may move in opposite directions or in the same direction at different velocities depending on their electrophoretic mobilities. Thus the final plug length is either longer or shorter than the original length. The technique has been successfully applied in a number of studies including enantiomeric separation with a variety of selectors, and for the determination of conditional association constants. Taken from Dr. Pharm. Sc. Thesis, A. Amini, Uppsala, 1998.  相似文献   

18.
The development and validation of an optimized capillary electrophoresis method for the determination of metacycline in the presence of its related substances by capillary electrophoresis is shown. The influence of methanol as organic modifier, buffer pH, buffer concentration, capillary length, column temperature, Triton X-100 and methyl-beta-cyclodextrin was investigated. A central composite design was performed in order to optimize the method. The optimal separation conditions were: uncoated fused-silica capillary (39 cm total length, 31 cm effective length, 50 microm ID); as background electrolyte a solution of 160 mM sodium carbonate and 1 mM EDTA (pH 10.35)/methanol (89:13 v/v); temperature, 15 degrees C; voltage, 12 kV. The method showed good selectivity, repeatability, linearity, and sensitivity. The limits of detection and quantitation are 0.024% and 0.06%, respectively, relative to a 2.5 mg/mL solution. Six commercial samples were analyzed quantitatively.  相似文献   

19.
Vaccher MP  Lipka E  Bonte JP  Vaccher C 《Electrophoresis》2004,25(7-8):1111-1119
Using cyclodextrin-capillary zone electrophoresis (CD-CZE), baseline separation of baclofen, a potent GABA(B) agonist; was achieved. A method for the enantioresolution of this gamma-aminobutyric acid (GABA) and determination of enantiomeric purity was developed using CDs (highly sulfated-CD or highly S-CD) as chiral selectors and capillaries dynamically coated with polyethylene oxide (PEO). Operational parameters, such as the nature and concentration of the chiral selectors, buffer concentration, organic modifiers, and applied voltage, were investigated. The use of charged CDs provides a driving force in the opposite direction of the positively charged baclofen in the running buffer and enantiomeric resolution by inclusion of compounds in the CD cavity. Highly S-beta-CD was found to be the most effective complexing agent, allowing good enantiomeric resolution. The complete resolution was obtained using 25 mM phosphate buffer, pH 2.5, containing 3% w/v highly S-beta-CD at 25 degrees C with aN applied field of 0.40 kV/cm. The apparent association constants of the inclusion complexes were calculated. This optimized method was validated in terms of repeatability and limits of detection (0.13 microg x mL(-1)) and quantification. The migration order was determined.  相似文献   

20.
A capillary zone electrophoresis method for analysis of polymyxin B sulfate is described. In this method, triethanolamine (TEA)-phosphate buffer at pH 2.5 was employed to reduce the adsorption of analyte onto the capillary wall. Methyl-beta-cyclodextrin (M-beta-CD) and 2-propanol (IPA) were found to be necessary for selectivity enhancement. In order to optimize the method and to control its robustness, a central composite design was performed with four parameters, i.e. concentration of M-beta-CD, TEA, IPA and buffer pH. The optimal separation conditions were as follows: capillary, 55 cm (50 microm I.D., 47 cm effective length); 130 mM TEA-phosphate buffer (pH 2.5) containing 5 mM M-beta-CD and 5% IPA; 24 kV (51 microA) applied voltage; column temperature, 20 degrees C. Further, linearity and limits of detection quantification were examined. Three commercial samples were analyzed quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号