首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 202 毫秒
1.
运用CCSD(T)理论和Dunning等的系列相关一致基对NH2自由基的基态结构进行了优化,并使用优选出的cc-pV5Z基组对其进行了频率计算.得到的结果是:平衡核间距RNH=0.10247 nm,键角∠HNH=102.947°,离解能De=4.2845 eV,振动频率ν1(a1)=1546.0342 cm-1,ν2(a1)=3379.5543 cm-1和ν3(b2)=3474.4784 cm-1.对NH自由基及H2分子,使用优选出的cc-pV6Z基组对其基态的几何构型与谐振频率进行了计算并进行了单点能扫描,且将扫描结果拟合成了解析的Murrell-Sorbic函数.采用多体项展式理论导出了NH2自由基的解析势能函数,其等值势能图准确再现了它的离解能和结构特征.报导了NH2自由基对称伸缩振动等值势能图中存在的两个对称鞍点,对应于反应NH+H→NH2,势垒高度约为0.1378×4.184 kJ/mool.  相似文献   

2.
运用CCSD(T)理论和Dunning等的系列相关一致基对NH2分子的基态结构进行了优化, 并使用优选出的cc-pV5Z基组对其进行了频率计算. 得到的结果是: 平衡核间距RNH= 0.10247 nm, 键角∠HNH = 102.947°, 离解能De = 4.2845 eV, 振动频率ν1(a1) = 1546.0342 cm-1, ν2(a1) = 3379.5543 cm-1和ν3(b2) = 3474.4784 cm-1. 对NH及H2分子, 使用优选出的cc-pV6Z基组对其基态的几何构型与谐振频率进行了计算并进行了单点能扫描, 且将扫描结果拟合成了解析的Murrell-Sorbie函数. 采用多体项展式理论导出了NH2分子的解析势能函数, 其等值势能图准确再现了NH2分子的离解能和结构特征. 报导了NH2分子对称伸缩振动等值势能图中存在的两个对称鞍点, 对应于反应NH+H→NH2, 势垒高度约为0.1378×4.184 kJ/mol.  相似文献   

3.
运用单双迭代三重激发耦合簇理论和相关一致五重基对SiH2的基态结构进行了优化,并在优化结构的基础上进行了离解能和振动频率的计算.结果表明:SiH2的基态为C2v结构,平衡核间距RSi-H=0.15163 nm,H-Si-H键的键角α=92.363°,离解能De(HSi-H)=3.2735 eV,频率ν1(a1)=1020.0095 cm -1,ν2(a1)=2074.8742cm-1,ν3(a1)=2076.4762cm-1.这些结果与实验值均较为相符.对H2的基态使用优选出的cc-pV6Z基组、对SiH的基态使用优选出的aug-cc-pV5Z基组进行几何构型与谐振频率的计算并进行单点能扫描,且将扫描结果拟合成了解析的Murrell-Sorbie函数.与实验结果及其他理论计算结果的比较表明,本文关于SiH自由基光谱常数(De,Re,ωe,Be,αe和ωeχe)的计算结果达到了很高的精度.采用多体项展式理论导出了SiH2(C2v,X1A1)自由基的解析势能函数,其等值势能图准确再现了它的离解能和平衡结构特征.同时还给出了SiH2(C2v,X1A1)自由基对称伸缩振动等值势能图中存在的两个对称鞍点,对应于SiH+H→SiH2反应,势垒高度为0.5084 eV.  相似文献   

4.
曾晖  赵俊 《物理学报》2014,63(6):63101-063101
利用单双迭代耦合簇理论CCSD结合相关一致四重基组cc-pVQZ对SeN2基态的平衡结构和谐振频率进行了优化计算.计算结果表明:基态SeN2自由基分子稳定态为C2v构型,基态电子组态为X1A1,平衡核间距RSe-N=0.1691 nm,RN-N=0.1970 nm,αN-Se-N=71.289?,离解能De=4.78 eV.基态简正振动频率分别为:ν1=326.9288 cm-1,ν2=808.0161 cm-1以及ν3=948.3430 cm-1.对SeN基态和N2基态采用上述相同方法进行几何构型与谐振频率的计算并进行单点能扫描,使用Murrell-Sorbie函数进行最小二乘拟合得到其势能函数和光谱常数,通过和其他理论值以及实验值做比较,显示本文的计算工作达到了很高的精度.应用多体项展式理论导出了基态SeN2的全空间解析势能函数,其势能函数等值势能图准确再现了SeN2分子的结构特征和能量变化.  相似文献   

5.
利用耦合簇方法和Dunning等提出的系列相关一致基对PH2自由基的基态结构进行优化, 并使用优选出的cc-pV5Z基组对其进行频率计算. 结果表明,平衡核间距RP—H=0.14185 nm, 键角αHPH=91.8624°, 离解能De(HP—H)=3.483 eV, 对称伸缩振动频率ν1a1)=2399.9781 cm-1, 弯曲振动频率ν2a1)=1128.4213 cm-1,反对称伸缩振动频率ν3b2)=2407.8374 cm-1. 在此基础上采用多体项展式理论导出了PH2自由基的解析势能函数, 其等值势能图准确再现了PH2自由基分子的平衡结构特征和动力学特征. 关键词: 2自由基')" href="#">PH2自由基 多体项展式理论 解析势能函数  相似文献   

6.
运用CCSD(T)理论和相关一致五重基对基态H2S分子进行了结构优化以及离解能和频率的计算.得到的结果是:该分子的基态为C2v结构,平衡核间距RS-H =0.13374 nm,键角∠HSH=92.3837°,离解能D0(H-SH)=3.8999 eV,频率υ1(a1)=1121.1865 cm-1,υ2(a1)=2727.5121 cm-1,υ3(a1)=2742.8342 cm-1.这些结果与实验结果均较为相符.对H2(X1Σ+g)分子使用cc-pV6Z、对SH(X2Π)自由基使用aug-cc-pV5Z基组进行几何优化和谐振频率的计算并进行单点能扫描,且将单点能扫描结果拟合成了解析的Murrell-Sorbie函数.与实验结果及其它理论结果的比较表明,本文关于SH(X2Π)自由基光谱常数(De,Re,ωe,Be,αe和ωeχe)的计算结果达到了较高的精度.采用多体项展式理论导出了H2S(C2v,X1A′)分子的解析势能函数,其等值势能图准确再现了该分子的离解能和平衡结构特征.报导了H2S(C2v,X1A′)分子对称伸缩振动等值势能图中存在的两个对称鞍点,对应于反应SH+H→SH2,势垒高度为0.1680×4.184 kJ/mol.  相似文献   

7.
运用CCSD(T)理论和相关一致五重基对基态H2S分子进行了结构优化以及离解能和频率的计算. 得到的结果是: 该分子的基态为C2v结构, 平衡核间距RS-H = 0.13374 nm, 键角∠HSH = 92.3837°, 离解能D0(H-SH) = 3.8999 eV, 频率υ1(a1) = 1121.1865cm-1, υ2(a1) = 2727.5121 cm-1, υ3(a1) = 2742.8342 cm-1. 这些结果与实验结果均较为相符. 对H2(X1Σ+g)分子使用cc-pV6Z、对SH(X2Π)自由基使用aug-cc-pV5Z基组进行几何优化和谐振频率的计算并进行单点能扫描, 且将单点能扫描结果拟合成了解析的Murrell-Sorbie函数. 与实验结果及其它理论结果的比较表明, 本文关于SH(X2Π)自由基光谱常数(De, Re, ωe, Be, αe和ωeχe)的计算结果达到了较高的精度. 采用多体项展式理论导出了H2S(C2v, X1A')分子的解析势能函数, 其等值势能图准确再现了该分子的离解能和平衡结构特征. 报导了H2S(C2v, X1A')分子对称伸缩振动等值势能图中存在的两个对称鞍点, 对应于反应SH+H→SH2, 势垒高度为0.1680×4.184 kJ/mol.  相似文献   

8.
运用Gaussian 03程序包中的单双迭代三重激发耦合簇理论和相关一致五重基优化了AsH_2的基态结构,并在优化结构的基础上计算了它的离解能和振动频率.结果表明:AsH_2基态的平衡构型具有C_(2v)对称性,键长R_(As-H)=0,1508 nm,键角∠HAsH=91.2231°,离解能D_e(Has-H)=2.8795 eV,振动频率ν_1(α_1)=1013.3361 cm~(-1),ν_2(α_1)=2225.1347 cm~(-1),ν_3(α_1)=2233.7565 cm~(-1).这些结果与实验值较为相符.对H_2的基态使用优选出的cc-pV6Z基组、对AsH的基态使用优选出的cc-pV5Z基组进行平衡几何与谐振频率的计算并进行单点能扫描,且将扫描结果拟合成了Murrell-Sorbie函数.与实验数据及其他理论结果的比较表明,本文关于AsH(X~3∑~-)自由基光谱常数(D_0,D_e,R_e,ω_e,B_e,α_e和ω_eX_e)的计算结果达到了很高的精度并最为完整.采用多体项展式理论导出了AsH_2(C_(2v),X~2B_1)自由基的解析势能函数,其等值势能图准确再现了它的离解能和平衡结构特征.首次报导了AsH_2(C_(2v),X~2B_1)自由基对称伸缩振动等值势能图中存在的两个对称鞍点,对应于反应AsH+H→ABH_2,势垒高度约0.1512×4.184 kJ/mol.
Abstract:
The CCSD(T) theory in combination with the cc-pV5Z basis set is used to determine the equilibrium geometry, dissociation energy and vibrational frequencies of AsH_2 (C_(2v), X~2B_1) radical. By comparison, excellent agreement can be found between the present results and the experiments. The values obtained at present are of 0.1508 ran for the equilibrium bond length R_(As-H), 91.2231° for the bond angle ∠ HASH, 2. 8795 eV for the dissociation energy D_e (HAs-H) and 1013.3361 cm~(-1), 2225.1347 cm~(-1) and 2233.7565 cm~(-1) for the vibrational frequencies ν_1(α_1), ν_2(α_1) and ν_3(α_1), respectively. The equilibrium geometry,harmonic frequency and potential energy curve of the AsH(X~3∑~-) radical are calculated at the CCSD(T)/cc-pV5Z level of theory. The ab initio results are fitted to the Murrell-Sorbie function with the least-square method. The spectroscopic parameters are in excellent agreement with the experiments. The analytic potential energy function of the AsH_2 (C_(2v), X~2 B_1) radical is derived by using the many-body expansion theory. This function correctly describes the configuration and dissociation energy of the AsH_2 (C_(2v), X~2B_1) radical. Two symmetrical saddle points have been found at (0.160 nm,0.296 nm) and (0.296 nm,0.160 nm) ,respectively. And the barrier height is equal to 0.1512×4.184 kJ/mol.  相似文献   

9.
SiO2分子的基态(X1A1)结构与分析势能函数   总被引:4,自引:3,他引:4       下载免费PDF全文
应用群论及原子分子反应静力学方法推导了SiO2分子的电子态及其离解极限,采用B3P86方法,在6-311G**水平上,优化出SiO2基态分子稳定构型为单重态的C2V构型,其平衡核间距Re=RSi-O=0.1587 nm,∠OSiO=111.2°,能量为-440.4392 a.u..同时计算出基态的简正振动频率:对称伸缩振动频率v(B2)=945.4cm-1,弯曲振动频率v(A1)=273.5 cm-1和反对称伸缩振动频率v(A1)=1362.9cm-1.在此基础上,使用多体项展式理论方法,导出了基态SiO2分子的全空间解析势能函数,该势能函数准确再现了SiO2(C2V)平衡结构.  相似文献   

10.
运用单双取代二次组态相关(QCISD)方法,在6-311++G(3df,3pd)基组水平上,对BeH2和H2S分子的结构进行了优化计算,得到基态BeH2分子的稳定结构为D∞h构型,电子态为为(X)1∑g+,平衡核间距RBeH=0.13268nm,RHH=0.26536 nm,键角∠HBeH=180.0°、离解能De=6.283383 eV和基态振动频率v1,v2,v3;同样方法得到了基态H2S分子的稳定结构为C2v构型,电子态为(X)1A1,得到了平衡核间距RHS=0.13357 nm,RHH=0.193155nm,键角∠HSH=92.6166°,离解能De=11.45901 eV和基态振动频率v1,v2,v3;用多体项展式理论推导了基态BeH2和H2S分子的解析势能函数,其等值势能图准确再现了基态BeH2和H2S分子的结构特征及其势阱深度与位置.  相似文献   

11.
运用单双迭代三重激发耦合簇理论和相关一致五重基对SiH2的基态结构进行了优化, 并在优化结构的基础上进行了离解能和振动频率的计算. 结果表明: SiH2的基态为C2v结构, 平衡核间距RSi—H= 0.15163 nm, H—Si—H键的键角α=92.363°, 离解能De(HSi—H)=3.2735 eV, 频率ν1a1)=1020.0095 cm-1, ν2a1)=2074.8742 cm-1, ν3a1)=2076.4762 cm-1. 这些结果与实验值均较为相符. 对H2的基态使用优选出的cc-pV6Z基组、对SiH的基态使用优选出的aug-cc-pV5Z基组进行几何构型与谐振频率的计算并进行单点能扫描, 且将扫描结果拟合成了解析的Murrell-Sorbie函数. 与实验结果及其他理论计算结果的比较表明, 本文关于SiH自由基光谱常数(De,Re, ωe, Be, αeωeχe)的计算结果达到了很高的精度. 采用多体项展式理论导出了SiH2C2v, X1A1)自由基的解析势能函数, 其等值势能图准确再现了它的离解能和平衡结构特征. 同时还给出了SiH2(C2v, X1A1)自由基对称伸缩振动等值势能图中存在的两个对称鞍点, 对应于SiH+H→SiH2反应, 势垒高度为0.5084 eV. 关键词: 2')" href="#">SiH2 Murrell-Sorbie函数 多体项展式理论 解析势能函数  相似文献   

12.
利用耦合簇理论CCSD(T)和相关一致基组cc-pVXZ和aug-co-pVXZ(X=2,3,4,5)计算了SH 和SD 的基态平衡几何re、谐振频率ωe和离解能De.计算结果表明,所用基组越大,得到的结果与实验值之间的差别就越小,因此我们选用了大基组aug-cc-pV5Z在0.07~2.50 nm的核间距范围内对SH 和SD 的基态进行单点能计算,并将计算结果拟合成了Murrell-Sorbie函数.利用得到的解析势能函数,计算了SH 和SD 的其余3个光谱常数(ωexe,αe和Be),其结果与实验值符合得相当好.  相似文献   

13.
H2Se(X1A1)分子的解析势能函数   总被引:1,自引:2,他引:1       下载免费PDF全文
使用密度泛函B3LYP方法和 6-311++G**基组,在优化H2Se(X1A1)基态结构,确定其正确离解极限,计算所有两体项和三体项参数基础上,建立了H2Se(X1A1)的多体项展式解析势能函数。其中对处于激发态两体项HSe(A2∑+)的计算,则使用SAC-CI方法。H2Se(X1A1)的等值势能图准确地表现了其结构和势能面的特征。  相似文献   

14.
SO-2(2B1)离子的结构与势能函数   总被引:1,自引:0,他引:1       下载免费PDF全文
用二次组态相互作用方法 ,在 6 31 1G(d)基组水平上对SO-2 离子进行了理论计算 ,得到了它的结构、能量、谐振频率和力学性质 ,其结果与实验值符合得非常好 .在此计算的基础上 ,应用多体展式理论方法推导出SO-2 离子的解析势能函数 ,该函数正确反映了SO-2 离子的结构特征和能量变化  相似文献   

15.
利用从头计算法QCISD/6-311G**确定了B3分子的基电子态,并计算了结构参数.采用原子分子反应静力学原理推导了其离解极限.在此基础上,用多体展式法导出了B3(X2A′1)的解析势能函数,可用于进一步的计算研究.通过势能函数等值图和三维图分析和展示了B3分子的结构特点,并指出由B2到B3分子的最可能途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号