首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
In this paper, we consider the unsteady aerodynamics of a two-dimensional airfoil as a dynamical system whose input is the angle of attack (or airfoil motion) and output is the lift force. Based on this view, we discuss the evolution of lift and circulation from a purely dynamical perspective through step response, frequency response, transfer function, etc. In particular, we point to the relation between the high-frequency gain of the transfer function and the physics of the development of lift and circulation. Based on this view, we show that the circulatory lift dynamics is different from the circulation dynamics. That is, we show that the circulatory lift is not lift due to circulation. In fact, we show that the circulatory–non-circulatory classification is arbitrary. By comparing the steady and unsteady thin airfoil theory, we show that the circulatory lift possesses some acceleration (added-mass) effects. Finally, we perform simulations of Navier–Stokes equations to show that a non-circulatory maneuver in the absence of a free stream induces viscous circulation over the airfoil.  相似文献   

2.
In this paper, we investigate a periodically pulsed bio-reactor model of a flowing water habitat with a hydraulic storage zone in which no flow occurs. The full system can be reduced to a limiting system based on a conservation principle. Then we obtain sufficient conditions in terms of principal eigenvalues for the persistence of single population and the coexistence of two competing populations for the limiting system by appealing to the theory of monotone dynamical systems. Finally, we use the theory of chain transitive sets to lift the dynamics of the limiting system to the full system.  相似文献   

3.
Ornithopters or mechanical birds produce aerodynamic lift and thrust through the flapping motion of their wings. Here, we use an experimental apparatus to investigate the effects of a wing's twisting stiffness on the generated thrust force and the power required at different flapping frequencies. A flapping wing system and an experimental set-up were designed to measure the unsteady aerodynamic and inertial forces, power usage and angular speed of the flapping wing motion. A data acquisition system was set-up to record important data with the appropriate sampling frequency. The aerodynamic performance of the vehicle under hovering (i.e., no wind) conditions was investigated. The lift and thrust that were produced were measured for different flapping frequencies and for various wings with different chordwise flexibilities. The results show the manner in which the elastic deformation and inertial flapping forces affect the dynamical behavior of the wing. It is shown that the generalization of the actuator disk theory is, at most, only valid for rigid wings, and for flexible wings, the power P varies by a power of about 1.0  of the thrust T. This aerodynamic information can also be used as benchmark data for unsteady flow solvers.  相似文献   

4.
The study of chaos has generated enormous interest in exploring the complexity of the behavior in nature and in technology. Many of the important features of chaotic dynamical systems can be seen using experimental and computational methods in simple nonlinear mechanical systems or electronic circuits. Starting with the study of a chaotic nonlinear mechanical system (driven damped pendulum) or a nonlinear electronic system (circuit Chua) we introduce the reader into the concepts of chaos order in Sharkovsky's sense, and topological invariants (topological entropy and topological frequencies). The Kirchhoff's circuit laws are a pair of laws that deal with the conservation of charge and energy in electric circuits, and the algebraic theory of graphs characterizes these linear systems in terms of cycles and cocycles (or cuts). Here we discuss methods (topological semiconjugacy to piecewise linear maps and Markov graphs) to find a similar situation for the nonlinear dynamics, to understanding chaotic dynamics. Thus to chaotic dynamics we associate a Markov graph, where the dynamical and topological invariants will be seen as graph theoretical quantities.  相似文献   

5.
We construct inertial manifolds for a class of random dynamical systems generated by retarded semilinear parabolic equations subjected to additive white noise. These inertial manifolds are finite-dimensional invariant surfaces, which attract exponentially all trajectories. We study the corresponding inertial forms, i.e., the restriction of the stochastic equation to the inertial manifold. These inertial forms are finite-dimensional Ito equations and they completely describe the long-time dynamics of the system under consideration. The existence of inertial manifolds and the properties of inertial forms allow us to show that under mild additional conditions the system has a global (random) attractor in the sense of the theory of random dynamical systems.  相似文献   

6.
《力学快报》2020,10(6):438-447
Sensitivity analysis in chaotic dynamical systems is a challenging task from a computational point of view. In this work, we present a numerical investigation of a novel approach, known as the space-split sensitivity or S3 algorithm. The S3 algorithm is an ergodic-averaging method to differentiate statistics in ergodic, chaotic systems, rigorously based on the theory of hyperbolic dynamics. We illustrate S3 on one-dimensional chaotic maps, revealing its computational advantage over naïve finite difference computations of the same statistical response. In addition, we provide an intuitive explanation of the key components of the S3 algorithm, including the density gradient function.  相似文献   

7.
Nonlinear aerodynamics of wings may be evaluated using an iterative decambering approach. In this approach, the effect of flow separation due to stall at any wing section is modeled as an effective reduction in section camber. The approach uses a wing analysis method for potential‐flow calculations and viscous airfoil lift curves for the sections as input. The calculation procedure is implemented using a Newton–Raphson iteration to simultaneously satisfy the boundary condition, which comes from potential‐flow wing theory, and drive the sectional operating points toward their respective viscous lift curves, as required for convergence. Of particular interest in this research is the calculation of the residuals during the Newton iteration. Unlike a typical implementation of the Newton iteration, the residual calculation is not performed via a straightforward function evaluation, but rather by estimating the target operating points on the input viscous lift curves. Estimation of these target operating points depends on the assumptions made in the cross‐coupling of the decambering at the different sections. This paper presents four residual calculation schemes for the decambering approach. The residual calculation schemes are compared against each other to assess computational speed and robustness. Decambering results are also compared with higher‐order computational fluid dynamics (CFD) solutions for rectangular and swept wings. Results from the best scheme compare well with the CFD solutions for the rectangular wing, motivating further development of the method. Poor predictions for the swept wings are traced to spanwise propagation of separated flow at stall, highlighting the limitations of the current approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This study focuses on the formation and detachment of a leading edge vortex (LEV) appearing on an airfoil when its effective angle of attack is dynamically changed, inducing additional forces and moments on the airfoil. Experimental measurements of the time-resolved velocity field using Particle Image Velocimetry (PIV) are complemented by a computational study using an URANS (Unsteady Reynolds-Averaged Navier–Stokes) framework. In this framework a transition-sensitive Reynolds-stress model of turbulence, proposed by Maduta et al. (2018), which combines the near-wall Reynolds-Stress model by Jakirlic and Maduta (2015) and a phenomenological transition model governing the pre-turbulent kinetic energy by Walters and Cokljat (2008), is employed. Combined pitching and plunging kinematics of the investigated flat plate airfoil enable the effective inflow angle to be arbitrarily prescribed. A qualitative assessment of flow fields and a quantitative comparison of LEV characteristics in terms of its center position and circulation as well as an investigation of the mechanism causing the vortex to stop accumulating circulation revealed close agreement between the experimental and simulation results. Further considerations of the lift contribution from the pressure and suction side of the airfoil to the overall lift indicates that the qualitative lift evolution is reproduced even if the pressure side contribution is neglected. This reveals important characteristics of such airfoil dynamics, which can be exploited in future experimental studies, where direct aerodynamic force and moment measurements are greatly inhibited by dominating inertial forces.  相似文献   

9.
We describe the status of a new time-dependent simulation capability for dense plasmas. The backbone of this multi-institutional effort – the Cimarron Project – is the massively parallel molecular dynamics (MD) code “ddcMD,” developed at Lawrence Livermore National Laboratory. The project’s focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low-Z elements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This paper summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision, describes two new experimental efforts that play a central role in our validation work, highlights some significant results obtained to date, outlines concepts now being explored to deal more efficiently with the very disparate dynamical timescales that arise in fusion plasmas, and provides a careful comparison of quantum effects on electron trajectories predicted by more elaborate dynamical methods.  相似文献   

10.
Causality in physics is an old idea which emphasizes the notion that there are ‘causes’ and ‘responses’ to those causes; this relationship is expressed through a fundamental equation which is supposed to describe the evolution of a dynamical system of particles. In a most elementary example, one may identify the power input to a system as the ‘cause’ and the rate of change of the internal plus kinetic energy of the system as representing the ‘response’. In this case, the balance of one against the other is a statement of balance of energy for the dynamical system; such balance is often postulated as fundamental in mechanics. It is the purpose of this paper to investigate a more fundamental causality based approach for describing the dynamics of a system of particles. Forces intrinsic and extrinsic to the system are distinguished and an evolutionary causality law, which is form-invariant under a change of frame, is proposed. We assume, as is common, that intrinsic forces are objective under a general change of frame. Extrinsic forces are assumed to be objective only under a Galilean (that is, inertial) change of frame. This limited objectivity will play a major role in reducing the fundamental proposed ‘law of causality’ to what is recognized as the classical balance of energy for the system. The concept of mass is not introduced as primitive in this work; the existence of ‘inertial constants’, each of which associates with a specific particle of the system, is a result of the theory. Double and triple binding forces between pairs and triples of particles are admitted as fundamental to the intrinsic force structure of this theory. The balance of linear momentum for the system is derived and a generalized intrinsic force action-reaction principle is obtained. The emergence from the causality theory of pair- and triple-particle potential functions is discussed and these potential functions are shown to be intimately related to the internal binding force structure. Moreover, in Theorem 6.1 the underlying invariance structure of the theory shows that the double and triple binding forces must be separately ‘moment-balanced’ and that this gives rise to the balance of moment-of-momentum for the system. Finally, a constitutive theory for the binding forces is posited and it is shown that the double binding forces are determined by the pair-particle potential function and that the triple binding forces are determined by the triple-particle potential function.  相似文献   

11.
We are concerned with the asymptotic dynamics of a certain type of semilinear parabolic equation, namely,u t=u xx+(f(u))x+g(u)+h(x) on the interval [0,L]. Under the general condition we prove that this equation admits a dissipative dynamical system and it possesses the global attractor. But for largeL > 0, we do not know whether or not an inertial manifold exists. Here we introduce a nonlinear change of variables so that we transform the above equation to a reaction diffusion system which possesses exactly the same asymptotic dynamics. We then prove the existence of an inertial manifold for the transformed equation; thereby we find the ordinary differential equation which describes completely the long-time dynamics of the orginal equation.  相似文献   

12.
We consider the problem of solving numerically the stationary incompressible Navier–Stokes equations in an exterior domain in two dimensions. For numerical purposes we truncate the domain to a finite sub-domain, which leads to the problem of finding so called “artificial boundary conditions” to replace the boundary conditions at infinity. To solve this problem we construct – by combining results from dynamical systems theory with matched asymptotic expansion techniques based on the old ideas of Goldstein and Van Dyke – a smooth divergence free vector field depending explicitly on drag and lift and describing the solution to second and dominant third order, asymptotically at large distances from the body. The resulting expression appears to be new, even on a formal level. This improves the method introduced by the authors in a previous paper and generalizes it to non-symmetric flows. The numerical scheme determines the boundary conditions and the forces on the body in a self-consistent way as an integral part of the solution process. When compared with our previous paper where first order asymptotic expressions were used on the boundary, the inclusion of second and third order asymptotic terms further reduces the computational cost for determining lift and drag to a given precision by typically another order of magnitude. Peter Wittwer: Supported in part by the Fonds National Suisse.  相似文献   

13.
Car coupler forces have a significant effect on the longitudinal train dynamics and stability. Because the coupler inertia is relatively small in comparison with the car inertia; the high stiffness associated with the coupler components can lead to high frequencies that adversely impact the computational efficiency of train models. The objective of this investigation is to study the effect of the coupler inertia on the train dynamics and on the computational efficiency as measured by the simulation time. To this end, two different models are developed for the car couplers; one model, called the inertial coupler model, includes the effect of the coupler inertia, while in the other model, called the noninertial model, the effect of the coupler inertia is neglected. Both inertial and noninertial coupler models used in this investigation are assumed to have the same coupler kinematic degrees of freedom that capture geometric nonlinearities and allow for the relative translation of the draft gears and end of car cushioning (EOC) devices as well as the relative rotation of the coupler shank. In both models, the coupler kinematic equations are expressed in terms of the car body and coupler coordinates. Both the inertial and noninertial models used in this study lead to a system of differential and algebraic equations that are solved simultaneously in order to determine the coordinates of the cars and couplers. In the case of the inertial model, the coupler kinematics is described using the absolute Cartesian coordinates, and the algebraic equations describe the kinematic constraints imposed on the motion of the system. In this case of the inertial model, the constraint equations are satisfied at the position, velocity, and acceleration levels. In the case of the noninertial model, the equations of motion are developed using the relative joint coordinates, thereby eliminating systematically the algebraic equations that represent the kinematic constraints. A quasistatic force analysis is used to determine a set of coupler nonlinear force algebraic equations for a given car configuration. These nonlinear force algebraic equations are solved iteratively to determine the coupler noninertial coordinates which enter into the formulation of the equations of motion of the train cars. The results obtained in this study showed that the neglect of the coupler inertia eliminates high frequency oscillations that can negatively impact the computational efficiency. The effect of these high frequencies that are attributed to the coupler inertia on the simulation time is examined using frequency and eigenvalue analyses. While the neglect of the coupler inertia leads, as demonstrated in this investigation, to a much more efficient model, the results obtained using the inertial and noninertial coupler models show good agreement, demonstrating that the coupler inertia can be neglected without having an adverse effect on the accuracy of the solution.  相似文献   

14.
We present the results of extensive numerical experiments of the spatially periodic initial value problem for the Kuramoto-Sivashinsky equation. Our concern is with the asymptotic nonlinear dynamics as the dissipation parameter decreases and spatio-temporal chaos sets in. To this end the initial condition is taken to be the same for all numerical experiments (a single sine wave is used) and the large time evolution of the system is followed numerically. Numerous computations were performed to establish the existence of windows, in parameter space, in which the solution has the following characteristics as the viscosity is decreased: a steady fully modal attractor to a steady bimodal attractor to another steady fully modal attractor to a steady trimodal attractor to a periodic (in time) attractor, to another steady fully modal attractor, to another time-periodic attractor, to a steady tetramodal attractor, to another time-periodic attractor having a full sequence of period-doublings (in the parameter space) to chaos. Numerous solutions are presented which provide conclusive evidence of the period-doubling cascades which precede chaos for this infinite-dimensional dynamical system. These results permit a computation of the lengths of subwindows which in turn provide an estimate for their successive ratios as the cascade develops. A calculation based on the numerical results is also presented to show that the period-doubling sequences found here for the Kuramoto-Sivashinsky equation, are in complete agreement with Feigenbaum's universal constant of 4.669201609.... Some preliminary work shows several other windows following the first chaotic one including periodic, chaotic, and a steady octamodal window; however, the windows shrink significantly in size to enable concrete quantitative conclusions to be made.This research was supported in part by the National Aeronautics and Space Administration under NASA Contract No. NASI-18605 while the authors were in residence at the Institute of Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Additional support for the second author was provided by ONR Grant N-00014-86-K-0691 while he was at UCLA.  相似文献   

15.
The cables in cable-stayed bridges can vibrate at large amplitudes during rain and windy conditions, a phenomenon known as rain-wind induced vibration (RWIV). Previous studies have demonstrated that the formation and oscillation of rivulets on stay cable surfaces play an important role in RWIV.This paper presents a new numerical method for simulating the evolution of rivulets on stay cable surfaces based on a combination of the gas–liquid two-phase theory and the volume of fluid method (VOF method), which allows for the straightforward determination of the cables’ aerodynamic lift when RWIV occurs. To verify the accuracy of this method and analyze the effects of wind velocity on the water film and the aerodynamic lift around the cable, three cases with different loadings were investigated using the computational fluid dynamics (CFD) software CFX. To verify the method’s accuracy, the aerodynamic lifts calculated from these cases were applied to the cable to obtain its vibrational response. In accordance with the experimental results, the numerical results demonstrated that an upper rivulet with a periodic oscillation was formed at a specific wind speed, causing the aerodynamic lift to change with a similar periodicity. The aerodynamic lift’s frequency was approximately the cable’s natural frequency, and induced large vibrations in the cable. No obvious upper rivulets were formed at sufficiently low wind speeds. The frequency of an aerodynamic lift that was significantly larger than the cable’s natural frequency induced small vibrations in the cable. When the wind speed was sufficiently high, despite the eventual formation of a continuous upper rivulet, the frequencies of the upper rivulet’s oscillation and the aerodynamic lift remained distinct from the natural frequency, and the cable continued to exhibit small-amplitude vibrations. These observations confirmed the conclusion that periodic variations in the water film morphology could lead to periodic changes in the aerodynamic lift that would induce RWIV.  相似文献   

16.
计算流体力学(computational fluid dynamics,CFD)数值模拟在航空航天等领域发挥越来越重要的作用,然而CFD数值模拟结果的可信度仍然需要通过不断地验证与确认来提高.本文给出了从制造解精度测试、简单到复杂外形湍流模拟网格收敛性研究等三个方面开展CFD软件验证与确认的方法,并对自主研发的CFD软件平台HyperFLOW在非结构网格上模拟亚跨声速湍流问题的能力进行了验证与确认.首先通过基于Euler方程和标量扩散方程的制造解精度测试,分别验证了HyperFLOW在非结构网格上对Euler方程和黏性项的求解精度,结果表明其能够在任意非结构网格上达到设计的二阶精度. 其次,通过NASATurbulence Modeling Resource中的湍流平板、二维翼型近尾迹流动、二维Bump等几个典型的亚声速湍流算例的网格收敛性研究,量化考察了数值结果的观测精度阶和网格收敛性指数,并与国外知名CFD解算器CFL3D,FUN3D的计算结果进行了对比,验证了HyperFLOW对简单湍流问题的模拟能力,且具有良好的网格收敛性和计算精度(阶). 最后,通过NASA CommonResearchModel标模定升力系数的网格收敛性研究和升阻极曲线预测,验证了软件在复杂外形亚跨声速湍流流动数值模拟中也具有良好的可信度.   相似文献   

17.
NOTES ON A STUDY OF VECTOR BUNDLE DYNAMICAL SYSTEMS(Ⅱ)──PART 1   总被引:2,自引:0,他引:2  
The study of linear and global properties of linear dynamical systems on vector bundles appeared rather extensive already in the past. Presently we propose to study perturbations of this linear dynamics. The perturbed dynamical system which we shall consider is no longer linear, while the properties to be studied will be still global in general. Moreover, we are intersted in the nonuniformly hyperbolic properties. In this paper, we set an appropriate definition for such perturbations. Though it appears somewhat not quite usual, yet has deeper root in standard systems of differential equations in the theory of differentiable dynamical systems. The general problem is to see which property of the original given by the dynamical system is persistent when a perturbation takes place. The whole content of the paper is devoted to establishing a theorem of this sort.  相似文献   

18.
Proper orthogonal decomposition (POD) has been used to develop a reduced-order model of the hydrodynamic forces acting on a circular cylinder. Direct numerical simulations of the incompressible Navier–Stokes equations have been performed using a parallel computational fluid dynamics (CFD) code to simulate the flow past a circular cylinder. Snapshots of the velocity and pressure fields are used to calculate the divergence-free velocity and pressure modes, respectively. We use the dominant of these velocity POD modes (a small number of eigenfunctions or modes) in a Galerkin procedure to project the Navier–Stokes equations onto a low-dimensional space, thereby reducing the distributed-parameter problem into a finite-dimensional nonlinear dynamical system in time. The solution of the reduced dynamical system is a limit cycle corresponding to vortex shedding. We investigate the stability of the limit cycle by using long-time integration and propose to use a shooting technique to home on the system limit cycle. We obtain the pressure-Poisson equation by taking the divergence of the Navier–Stokes equation and then projecting it onto the pressure POD modes. The pressure is then decomposed into lift and drag components and compared with the CFD results.  相似文献   

19.
张毅  宋传静  翟相华 《力学学报》2023,55(5):1174-1180
变加速运动在日常生活和工程问题中普遍存在.变加速动力学又称牛顿猝变动力学,因其在混沌理论和非线性动力学中的应用而获得广泛关注.高斯原理是一个具有极值性质的微分变分原理.因此,研究变加速动力学系统的广义高斯原理在理论和应用两方面都有重要意义.文章提出并研究变加速动力学系统的广义高斯原理.首先,引入急动度空间的广义高斯变分概念,将质点的达朗贝尔原理对时间求导数后与广义高斯变分点乘,并利用高斯意义下的理想约束条件,建立了变加速动力学系统的广义高斯原理.在此基础上,通过构造广义拘束函数建立并证明变加速动力学系统的广义高斯最小拘束原理,并给出原理的阿佩尔形式、拉格朗日形式和尼尔森形式.其次,研究原理对变质量力学的推广.从密歇尔斯基方程出发,将它对时间求导并与广义高斯变分点乘,建立了具有理想约束的变质量变加速动力学系统的广义高斯原理.通过构造变质量系统的广义拘束函数,建立并证明变质量力学系统变加速运动的广义高斯最小拘束原理.文中以开普勒-牛顿空间问题为例,利用所得的广义高斯最小拘束原理方法进行计算,验证了方法的有效性.  相似文献   

20.
NOTESONASTUDYOFVECTORBUNDLEDYNAMICALSYSTEMS(Ⅱ)──PART1LiaoShantao(廖山涛)Abstract:Thestudyoflinearandglobal.propertiesoflineardyn...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号