首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Conventional synthetic aperture processing uses motion of the sonar to increase aperture size and bearing resolution. Two recent papers discussed a different application in which synthetic elements are used to fill in an otherwise sparse passive array. This paper points out that ambiguities persist, even with synthetic elements, in the ideal case of a straight, uniform, sparse line array with constant velocity in the presence of plane wave signals. It is also shown that irregular motion such as acceleration introduces additional information which can be exploited to suppress the ambiguities. The degree of suppression in such an approach is independent of signal direction. If source stability supports extended coherent integration, then the acceleration and integration time required are both modest to achieve interesting levels of suppression. For a less stable source, a modified conventional beamformer is introduced which leverages acceleration over multiple snapshots to suppress the ambiguities. A post-beamformed processing stage involving a nonlinear deconvolution technique such as the CLEAN algorithm can further improve the result. A semi-coherent adaptation of CLEAN is shown to remove the residual ambiguities effectively in the presence of a moderate level of uncorrelated noise.  相似文献   

2.
Wideband RELAX and wideband CLEAN for aeroacoustic imaging   总被引:1,自引:0,他引:1  
Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.  相似文献   

3.
贾雨晴  苏林  郭圣明  马力 《物理学报》2018,67(17):174302-174302
针对利用不同阵列对浅海环境中水下目标的定位问题,基于简正波分解方法,对组合阵的目标声源定位性能进行了研究,着力解决在实际实验环境下定位性能不够高的问题,并降低实验设备布放难度.在浅海环境下,基于匹配场理论的声接收阵可实现目标的定位,但定位性能受阵形、阵元数目等影响.通过研究不同声接收阵的简正波分解矩阵,可以有效辨别不同阵形定位性能的优劣.仿真实验表明,当某一子阵简正波分解效果较差时,会降低组合阵的定位性能.基于实际实验的需求,在对短垂直阵和组合阵性能的研究中发现,由于水平阵对接收声场的定位模糊度函数中的旁瓣有抑制效果,从而造成模糊度函数表面上旁瓣较低,定位目标的主旁瓣比有所提升的现象.仿真实验表明,不同组合阵形的定位准确度均在90%以上,基于实际应用的考虑,组合阵无疑是对定位性能和实验复杂度的折中选择.  相似文献   

4.
为进行强目标相关旁瓣干扰下的相邻弱目标检测,采用稀疏重建理论进行多目标方位估计。高信噪比情况下,由方位估计结果即可完成目标检测;对于低信噪比弱目标回波,为提高系统检测能力,结合方位估计结果,提出了两种检测算法,前者类似于传统CLEAN算法,从能量角度进行目标检测;后者则利用相关函数能量集中于主瓣的特点,通过计算将目标方位估计结果中非零元素置零前后匹配滤波峰值的差值,采用Page-test序贯检测器进行多目标检测。仿真和试验数据处理结果表明,相同检测概率下,第二种方法具有更加优良的弱目标检测性能。   相似文献   

5.
Several deconvolution algorithms are commonly used in aeroacoustics to estimate the power level radiated by static sources, for instance, the deconvolution approach for the mapping of acoustic sources (DAMAS), DAMAS2, CLEAN, and the CLEAN based on spatial source coherence algorithm (CLEAN-SC). However, few efficient methodologies are available for moving sources. In this paper, several deconvolution approaches are proposed to estimate the narrow-band spectra of low-Mach number uncorrelated sources. All of them are based on a beamformer output. Due to velocity, the beamformer output is inherently related to the source spectra over the whole frequency range, which makes the deconvolution very complex from a computational point of view. Using the conventional Doppler approximation and for limited time analysis, the problem can be separated into multiple independent problems, each involving a single source frequency, as for static sources. DAMAS, DAMAS2, CLEAN, and CLEAN-SC are then extended to moving sources. These extensions are validated from both synthesized data and real aircraft flyover noise measurements. Comparable performances to those of the corresponding static methodologies are recovered. All these approaches constitute complementary and efficient tools in order to quantify the noise level emitted from moving acoustic sources.  相似文献   

6.
Ambiguity surface sidelobes generated by the Bartlett matched-field processor (MFP) shift location with frequency. This sidelobe shift can be viewed as a continuous trajectory in a range-frequency plane at a fixed depth, where the trajectories converge to the correct source range for a perfectly matched surface. In isovelocity or bottom-interacting environments the sidelobe trajectories are straight lines that converge to the true range at zero frequency, while environments with upward-refracting sound-speed profiles have trajectories that asymptotically converge as the frequency approaches infinity. This behavior can be explained by the theory of waveguide invariants, which predict the local behavior of interference maxima/minima of acoustic intensity in the frequency-range plane. As the ambiguity surface of the Bartlett matched-field processor has a physical interpretation in terms of a time-reversed acoustic field, with the sidelobes analogous to local interference maxima, these invariant concepts can be reformulated for application to MFP. These interference trajectories are demonstrated to exist in simulations, broadband source tows, and a type A blue whale vocalization. Sidelobe trajectories also exist in the range-depth plane, but they contain no information about the correct source depth. An appendix demonstrates how these sidelobe properties can be exploited when combining ambiguity surfaces through use of gradient and Radon transform information. The resulting range estimators demonstrate better peak-to-sidelobe ratios than a simple incoherent average.  相似文献   

7.
Fast implementations of the sparse iterative covariance-based estimation (SPICE) algorithm are presented for source localization with a uniform linear array (ULA). SPICE is a robust, user parameter-free, high-resolution, iterative, and globally convergent estimation algorithm for array processing. SPICE offers superior resolution and lower sidelobe levels for source localization compared to the conventional delay-and-sum beamforming method; however, a traditional SPICE implementation has a higher computational complexity (which is exacerbated in higher dimensional data). It is shown that the computational complexity of the SPICE algorithm can be mitigated by exploiting the Toeplitz structure of the array output covariance matrix using Gohberg-Semencul factorization. The SPICE algorithm is also extended to the acoustic vector-sensor ULA scenario with a specific nonuniform white noise assumption, and the fast implementation is developed based on the block Toeplitz properties of the array output covariance matrix. Finally, numerical simulations illustrate the computational gains of the proposed methods.  相似文献   

8.
贾雨晴  苏林  郭圣明  马力 《应用声学》2018,37(4):518-527
针对浅海环境下声速剖面失配引起的匹配场处理器失配问题,提出了一种自适应匹配场定位算法在声速剖面时变环境下的实现方式。将先验声速剖面集简化为经验正交函数表示,结合蒙特卡洛方法与环境扰动约束算法对当下时刻的目标声源进行匹配场定位。本文以某次试验获取的连续20小时的声速剖面数据为研究对象,通过仿真试验对该算法进行验证,结果表明:在先验声速剖面集的半小时之后,利用自适应算法的距离和深度定位成功率较常规匹配场算法有较大提升,其中,深度正确定位概率相对较低。  相似文献   

9.
Three-dimensional(3D) imaging sonars based on the conventional beamforming(CBF) suffers from relatively wide main-lobes and high sidelobe level.To improve the spatial resolution of 3D imaging sonars,a deconvolved beamforming method is proposed with the iterative Richardson-Lucy algorithm in this paper.At first,each distance slice can be processed to obtain images by the CBF.For the near field,the Fresnel approximation is used.Then,the deconvolution technique is applied to the CBF outputs to obtain high-resolution images and suppress the sidelobe level.The simulations demonstrate that the proposed algorithm is able to improve the spatial resolution significantly and suppress the sidelobes for 3D imaging sonars.Meanwhile,the algorithm shows similar robustness with the CBF in the case of wideband and sparse array.The priority of the proposed algorithm is also validated by the tank experiment data.The presented results indicate that the spatial resolution is increased by one time and the average sidelobe level is reduced by 20 dB.  相似文献   

10.
I.IntroductionInsha1lowsea,passivesource1ocalizationisadifficu1t,yctinterestingprob1emthathasre-ceivcdagrcatdca1ofattcnti0ninthelastfCwycars.l'-'1Theconventiona1sourccloca1izationistOmatchthercceivcdacousticdatawiththesoundficldprcdictcdbythepropagationmodcl.Thistechniqueiscallcdmatchcd-ficldproccssing(MFP).Itiscommonlyacceptcdthatinshal-low-watercnvironmcnLssoundficldcanbcwclldcscribcdbyanormal-modemodel.Accord-ingtothismodcl,thcacousticprcssurecanbecxprcsscdasalincarcombinationofthenorma…  相似文献   

11.
We develop the radio-astronomical approach for solving the few-projection tomography problem. It is shown that the 2-CLEAN DSA method proposed for determination of the permissible solution area is an efficient way for solving this problem. The method is based on solving the deconvolution problem with allowance for the synthesized beam or the synthesized Green's function. The distortions due to the sidelobe responses of the synthesized transfer function are eliminated by using two realizations of the well-known iterative radio-astronomical CLEAN algorithm with nonlinear constraints. The proposed 2-CLEAN DSA method allows one to decrease the number of projections required for two-dimensional reconstruction by a factor of about 10 as compared with the conventional tomography approach, provided that a wide spatial-frequency spectrum limited from above is reconstructed. The method can easily be adapted to introducing additional constraints. Examples of astrotomography reconstruction are presented. We show that the proposed method is promising for a large number of remote sensing applications and compare it with other well-known reconstruction techniques. The papers by radio astronomers, who contributed significantly to the development of components of the method, are pointed out.  相似文献   

12.
Xiang Pan  Wen Xu  Jianlong Li  Xianyi Gong   《Applied Acoustics》2009,70(11-12):1406-1411
To enhance detection of small targets, the combination of time reversal processing (TRP) and synthetic aperture beamforming (SABF) is investigated. With the spatial–temporal focusing, the potential application of TRP for active detection has been demonstrated [Kim S, Kuperman WA, Hodgkiss WS. Echo-to reverberation enhancement using a time reversal mirror. J Acoust Soc Am 2004;115(4):1525–31]. When a physical probe source (PS) replaced by a modeled source (MS), the “potential” is turned into being more practical. Similar to matched field processing, the robustness of TRP with MS needs to be considered. Meanwhile by the improvement of the extended towed array measurement (ETAM) algorithm of passive SABF, a segmented ETAM algorithm is discussed for its use in active sonar. With the echo-signal enhancement by time reversal transmission, the echo-to-reverberation ratio is further improved by SABF. Finally a matched filter is used to detect the target and the range of the target is estimated by the time delay referenced to the transmission time. The results of the waveguide tank experiment demonstrate that the TRP–SABF method can effectively detect and locate a bottom cylinder shell of 0.51 m long and 0.21 m in diameter.  相似文献   

13.
Reconstruction of radio images of the Sun obtained by the Siberian Solar Radio Telescope (SSRT) encounters two main problems. First, since the solar radio images at a wavelength of 5.2 cm have a high contrast, the amplitude–phase distribution in the antenna–feeder section should be known with a very high accuracy. Second, since such images comprise not only bright compact components but also low-contrast diffuse areas, there is a problem of deconvolution of these diffuse sources, which is inherent to the CLEAN algorithm. To solve the first problem, we determine the amplitude–phase distortions by an iterative analysis of the image itself, in which the opposite sidelobes of the point-source response are compared. To suppress the influence of other sources on the response, we analyze several compact sources. The phase distortions are determined from the asymmetry of the sidelobes, and the amplitude distortions, from sidelobe values. The image is corrected in the spatial-spectrum domain after each iteration. On the one hand, the problems encountered when reconstructing extended sources are related to the fact that the CLEAN algorithm requires significant computer resources. On the other hand, reconstructing images of extended areas requires that the number of cycles of this algorithm should be increased. Another problem consists in the fact that the use of the same clean antenna pattern for reconstructing compact and extended sources results in appearance of high-frequency distortions of the latter sources. If the CLEAN algorithm is applied, then the computer resources are mainly spent to shift the pattern and to find the maximum of the initial image. We decrease the time necessary for shifting the pattern by excluding the points near the zero value from the antenna-pattern data set and by sorting the remaining data points. The time of finding the maximum was decreased by using a local search window. In addition, we use a number of cutoff levels and search the next maximum in the whole image only after reconstructing the windowed image down to the current cut level. To reconstruct bright compact sources, we use the clean antenna pattern close to the ideal pattern. To reconstruct low-contrast diffuse areas, we use the model patterns obtained by convolving the antenna pattern with the images of extended sources.  相似文献   

14.
To resolve coherent/incoherent, distributed/compact, and multipole aerodynamic-sound sources with phased-array pressure data, a new source-detection algorithm is developed based on L1 generalized inverse techniques. To extract each coherent signal, a cross spectral matrix is decomposed into eigenmodes. Subsequently, the complex source-amplitude distribution that recovers each eigenmode is solved using generalized inverse techniques with reference solutions which include multipoles as well as a monopole. Namely, the source distribution consisting of pre-defined source types is solved as an L1 norm problem using iteratively re-weighted least squares (IRLS). The capabilities of the proposed algorithm are demonstrated using various benchmark problems to compare the results with several existing beam-forming algorithms, and it is found that distributed sources as well as dipoles with arbitrary orientation can be identified regardless of coherency with another source. The resolution is comparable to existing deconvolution techniques, such as DAMAS or CLEAN, and the computational cost is only several times more than that of DAMAS2. The proposed algorithm is also examined using previous model-scale test data taken in an open-jet wind-tunnel for a study on jet-flap interaction, and some indication of dipole radiation is discerned near the flap edge.  相似文献   

15.
杨虎  陈航  滕舵  李道江  陈永森 《声学学报》2009,34(3):211-216
提出了一种近场条件下采用不等间隔阵并进行孔径变迹处理的水下声成像旁瓣抑制方法,并进行了理论和实验研究。考虑以球面波传播理论为基础的聚焦波束形成,首先通过阵元位置微调,设计了可实现低旁瓣的不等间隔阵,从单程波束响应上降低旁瓣;然后,将孔径变迹处理方法应用于水下声成像中,全部阵元用于接收,部分阵元用于发射,从双程波束响应上进一步降低旁瓣。通过水池实验对所提出的方法进行了验证。结果表明:采用不等间隔阵并进行孔径变迹处理可以更为有效地降低旁瓣,而主瓣仅有小量展宽,且该方法工程应用简便易行,在改善成像质量的同时降低了系统复杂度。   相似文献   

16.
An approach of Bayesian Matched Field Processing (MFP) was discussed in the uncertain ocean environment. In this approach, uncertainty knowledge is modeled and spatial and temporal data received by the array are fully used. Therefore, a mechanism for MFP is found, which well combines model-based and data-driven methods of uncertain field processing. By theoretical derivation, simulation analysis and the validation of the experimental array data at sea, we find that (1) the basic components of Bayesian matched field processors are the cor- responding sets of Bartlett matched field processor, MVDR (minimum variance distortionless response) matched field processor, etc.; (2) Bayesian MVDR/Bartlett MFP are the weighted sum of the MVDR/Bartlett MFP, where the weighted coefficients are the values of the a posteriori probability; (3) with the uncertain ocean environment, Bayesian MFP can more correctly locate the source than MVDR MFP or Bartlett MFP; (4) Bayesian MFP can better suppress sidelobes of the ambiguity surfaces.  相似文献   

17.
The array invariant   总被引:1,自引:0,他引:1  
A method is derived for instantaneous source-range estimation in a horizontally stratified ocean waveguide from passive beam-time intensity data obtained after conventional plane-wave beamforming of acoustic array measurements. The method has advantages over existing source localization methods, such as matched field processing or the waveguide invariant. First, no knowledge of the environment is required except that the received field should not be dominated by purely waterborne propagation. Second, range can be estimated in real time with little computational effort beyond plane-wave beamforming. Third, array gain is fully exploited. The method is applied to data from the Main Acoustic Clutter Experiment of 2003 for source ranges between 1 to 8 km, where it is shown that simple, accurate, and computationally efficient source range estimates can be made.  相似文献   

18.
Hu CH  Liu R  Zhou Q  Yen J  Kirk Shung K 《Ultrasonics》2006,44(3):330-336
A scheme of using phase-coded excitation and mismatched filter compression for high-frequency ultrasound imaging is presented in this paper. Biphase-coded pulses were constructed to excite the transducer. Received signals were compressed with mismatched filters optimized by minimizing peak-sidelobe-level (PSL). Both simulation and experiments were carried out to demonstrate the advantage of this technique. The simulation results demonstrated a possible sidelobe reduction (<-90 dB) with a slightly decrease of the signal-to-noise ratio of less than 1 dB compared with the compression using matched filters alone. The experimental results showed about 14 dB SNR improvement as well as -40 dB sidelobe level when the Barker-13 code excitation with 3-cycle sinusoidal wave carrier was used.  相似文献   

19.
考虑到传统的匹配场处理定位需要复杂的匹配声场计算,并对环境参数和声场模型有很高的依赖,为了克服这种缺点,采用虚拟接收方法对声源进行测距。首先对垂直阵接收到的引导声源和目标声源的信号进行相关处理,得到虚拟接收声场并估计虚拟接收声场干涉条纹的斜率,结合波导不变特征量β对目标声源进行测距。通过数值仿真和2004年南海实验数据处理,讨论了浅海斜坡海域环境中不同频段下利用虚拟接收方法对宽带声源测距的性能。随着频率升高,需要展宽频带以获得完整的干涉条纹和良好的测距结果。在实验数据处理中,选取频段较高的信号时,由于阵列间距偏大不能保证采样的简正波模式的正交归一特性,不能获得正确的测距结果。   相似文献   

20.
Most array signal processing algorithms use uniform element spacing to estimate source bearing. This paper demonstrates the benefit of using nonuniform element spacing in Bartlett, linear prediction (LP), and minimum variance (MV) array processing algorithms. By using optimum element spacing results obtained by previous investigators for sidelobe reduction of the Bartlett method, better MV and LP performances, in terms of array output power, are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号