首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[structure: see text] Spin trapping consists of using a nitrone or a nitroso compound to "trap" an unstable free radical as a long-lived nitroxide that can be characterized by electron paramagnetic resonance (EPR) spectroscopy. The formation of DMPO-OOH, the spin adduct resulting from trapping superoxide (O(2)(*)(-)) with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), has been exploited to detect the generation of superoxide in a wide variety of biological and chemical systems. The 12-line EPR spectrum of DMPO-OOH has been either reported or mentioned in more than a thousand papers. It has been interpreted as resulting from the following couplings: A(N) approximately 1.42 mT, A(H)beta approximately 1.134 mT, and A(H)gamma(1H) approximately 0.125 mT. However, the DMPO-OOH EPR spectrum has an asymmetry that cannot be reproduced when the spectrum is calculated considering a single species. Recently, it was proposed that the 0.125 mT splitting was misassigned and actually results from the superimposition of two individual EPR spectra associated with different conformers of DMPO-OOH. We have prepared 5,5-dimethyl-[3,3-(2)H(2)]-1-pyrroline N-oxide (DMPO-d(2)), and we showed that the EPR spectrum of the corresponding superoxide spin adduct is composed of only six lines, in agreement with the assignment of the 0.125 mT splitting to a gamma-splitting from a hydrogen atom bonded to carbon 3 of DMPO. This result was supported by DFT calculations including water solvation, and the asymmetry of the DMPO-OOH EPR spectrum was nicely reproduced assuming a chemical exchange between two conformers.  相似文献   

2.
Reaction of Cu(BF(4))(2).6H(2)O with the N(3)O(2) donor ligand H(2)L (where H(2)L = N-benzyl-N',N'-di-tert-butyl-disalicyl-triaminocyclohexane) results in the formation of a novel Cu(II)L complex, 1. X-Ray crystallography of it shows the Cu(II) centre coordinated by two phenolate oxygens and two imine nitrogens in a distorted square plane with an elongated bond to the amine nitrogen (2.512 A) in the axial position. EPR spectroscopy gives g values of g(1) = 2.277, g(2) = 2.100, g(3) = 2.025, and A(1) = 15.6 mT which are consistent with the distorted square pyramidal coordination environment determined from the X-ray structure. UV/visible and electrochemical analysis of shows that it undergoes two reversible processes assigned to the successive oxidation of the phenolate oxygens to phenoxyl radicals, the first at E((1/2)) = 0.89 V (DeltaE = 81 mV, vs. Ag/AgCl) and the second at E((1/2)) = 1.13V (DeltaE = 84 mV, vs. Ag/AgCl). Chemical oxidation results in the formation of a species, assigned as [1](+)(.) which is EPR silent due to antiferromagnetic coupling between the Cu(II) centre and the bound phenoxyl radical. The oxidised species catalyses the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

3.
Sulfonated chloroaluminum phthalocyanines have been studied for their use in the photodynamic therapy (PDT) of tumors. Plasma low-density lipoproteins (LDL) are important carriers of phthalocyanines in the blood, but on exposure to visible light, phthalocyanine-loaded LDL undergo an oxidation process that propagates to erythrocytes. We attempted to identify the reactive species involved in LDL and erythrocyte oxidation by means of electron paramagnetic resonance (EPR) spectroscopy in the presence of 2,2,6,6-tetramethyl-4-piperidone (TEMP) and the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO). Irradiation of phthalocyanine-loaded LDL in the presence of DMPO resulted in the formation of a four-line EPR spectrum with relative intensity of 1:2:2:1 (a(N) = a(H) = 14.8 G), characteristic of DMPO-hydroxyl radical spin adduct. This signal was sensitive to superoxide dismutase and slightly sensitive to catalase, but a mixture of the two enzymatic activities was the most efficient in promoting a decrease in the intensity of the EPR signal. In the presence of erythrocytes, an increase in the quartet intensity for a hematocrit of 1% and 4% was observed, decreasing for higher erythrocyte concentrations. The irradiation of phthalocyanine-loaded LDL in the presence of TEMP resulted in the formation of a nitroxide radical, 2,2,6,6-tetramethyl-4-piperidone-N-oxyl radical, intensity of which was sensitive to histidine, a singlet oxygen ((1)O(2)) quencher. Under both incubation conditions, with DMPO and TEMP, the formation of the respective EPR signals required the sensitizer (phthalocyanine), light and oxygen. Overall, the results are compatible with the simultaneous formation of superoxide anion and (1)O(2), implying that Type-I and Type-II mechanisms of photochemistry are simultaneously operative in phthalocyanine-loaded LDL. However, for a constant LDL/phthalocyanine ratio, the formation of oxygen free radicals shows a biphasic behavior with the concentration of LDL increasing and reaching a plateau, whereas the formation of (1)O(2) increases linearly with LDL concentration. Erythrocytes at high (physiological) concentrations induced a decrease in the intensity of both EPR signals. The physiological relevance of these findings in the framework of PDT is briefly discussed.  相似文献   

4.
Peroxynitrite (ONOO-), a biologically active species, can induce lipid peroxidation in biological membranes, thereby leading to the formation of various hydroperoxides. We report herein on the formation of singlet molecular oxygen [O(2) ((1)Delta(g))] in the reaction of peroxynitrite with linoleic acid hydroperoxide (LAOOH) or (18)O-labeled LAOOH. The formation of O(2) ((1)Delta(g)) was characterized by (i) dimol light emission in the red spectral region (lambda > 570 nm) using a red-sensitive photomultiplier; (ii) monomol light emission in the near-infrared region (lambda = 1270 nm) with a liquid nitrogen-cooled germanium diode or a photomultiplier coupled to a monochromator; (iii) the enhacing effect of deuterium oxide on chemiluminescence intensity, as well as the quenching effect of sodium azide; and (iv) chemical trapping of O(2) ((1)Delta(g)) or (18)O-labeled O(2) ((1)Delta(g)) with the 9,10-diphenylanthracene (DPA) and detection of the corresponding DPAO(2) or (18)O-labeled DPA endoperoxide by HPLC coupled to tandem mass spectrometry. Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated by a direct spectral characterization of the near-infrared light emission attributed to the transition of O(2) ((1)Delta(g)) to the triplet ground state. For the sake of comparison, O(2) ((1)Delta(g)) deriving from the thermolysis of the endoperoxide of 1,4-dimethylnaphthalene or from the H(2)O(2)/hypochlorite and H(2)O(2)/molybdate systems were also monitored. These novel observations identified the generation of O(2) ((1)Delta(g)) in the reaction of LAOOH with peroxynitrite, suggesting a potential O(2) ((1)Delta(g))-dependent mechanism that contributes to cytotoxicity mediated by lipid hydroperoxides and peroxynitrite reactions in biological systems.  相似文献   

5.
The secondary reactions of the oxidation and thermal transformations of gamma irradiated (at 77 K) and plasticized (with water) cellulose radicals were studied by 3 cm-and 2 mm-band EPR spectroscopy. The radiolysis of cotton cellulose was found to produce the H-C*=O formyl radical, and heating the irradiated samples to 190–200 K resulted in the formation of the ROO* peroxide radical. The EPR spectra of microcrystalline cellulose recorded at room temperature contained an individual triplet (α β H = 2.5–2.7 mT) with an additional quadruplet structure (splitting 0.5–0.7 mT) from three γ-hydrogens. This triplet was interpreted as a signal of the primary radical at C4. The main direction of thermal transformations of primary radicals was synchronous reactions of the dehydration of the polycarbohydrate complex accompanied by the dissociation of the C-H, C-OH, and C-C bonds and elimination of H2O, H2, CO, and CO2 with successive formation of allyl and then polyene radicals, which were a source of the growth of polyconjugated systems in macromolecules.  相似文献   

6.
Photoexcitation of the electron donor (D) within a linear, covalent donor-acceptor-acceptor molecule (D-A(1)-A(2)) in which A(1) = A(2) results in sub-nanosecond formation of a spin-coherent singlet radical ion pair state, (1)(D(+?)-A(1)(-?)-A(2)), for which the spin-spin exchange interaction is large: 2J = 79 ± 1 mT. Subsequent laser excitation of A(1)(-?) during the lifetime of (1)(D(+?)-A(1)(-?)-A(2)) rapidly produces (1)(D(+?)-A(1)-A(2)(-?)), which abruptly decreases 2J 3600-fold. Subsequent coherent spin evolution mixes (1)(D(+?)-A(1)-A(2)(-?)) with (3)(D(+?)-A(1)-A(2)(-?)), resulting in mixed states which display transient spin-polarized EPR transitions characteristic of a spin-correlated radical ion pair. These photodriven J-jump experiments show that it is possible to use fast laser pulses to transfer electron spin coherence between organic radical ion pairs and observe the results using an essentially background-free time-resolved EPR experiment.  相似文献   

7.
The germanium(II) compound (dpp-BIAN)GeCl (1), which contains the radical anion of dpp-BIAN can be prepared either by reacting free dpp-BIAN ligand with 2 equiv of GeCl2(1,4-dioxane) in Et2O or by metathetical reaction of the sodium salt of dpp-BIAN with germanium dichloride in Et2O or benzene. The reaction of benzene solutions of 1 with 2 or 3 equiv of HCl led to protonation of the dpp-BIAN ligand affording [(dpp-BIAN)(H)2]*+[GeCl3]- (2) and [[(dpp-BIAN)(H)2*+]2(Cl-)]+ [GeCl3]- (3), which incorporate the radical cation of the protonated ligand. Compounds 1-3 have been characterized by elemental analysis, IR, UV-vis, and electron spin resonance (ESR) spectroscopy. Molecular structures of 1-3 were determined by single-crystal X-ray diffraction. In molecule 1, the Ge atom is positioned at the apex of the slightly distorted trigonal pyramid. The Ge-N bond lengths in 1 are 2.0058(19) and 2.004(2) A. The molecular structure of 2 consists of contact ions [(dpp-BIAN)(H)2]+ and [GeCl3]-. In the molecular structure of 3, two radical cations of [(dpp-BIAN)(H)2]+ are "coordinated" by the chlorine anion. The ESR signal of 1 indicates the presence of a dpp-BIAN radical anion and shows a hyperfine structure due to the coupling of an unpaired electron to 14N, 73Ge, 35Cl, 37Cl, and 1H nuclei (AN=0.48 (2 N), AGe=0.96, ACl=0.78 (35Cl), ACl=0.65 (37Cl), AH=0.11 (4 H) mT, g=2.0014). Both 2 and 3 reveal ESR signals of radical cation [(dpp-BIAN)(H)2]*+ (septet, AN=0.53, AH=0.48 mT, g=2.0031).  相似文献   

8.
Crystallographic studies of the hydrogenases (Hases) from Desulfovibrio gigas (Dg) and Desulfovibrio vulgaris Miyazaki (DvM) have revealed heterodinuclear nickel-iron active centers in both enzymes. The structures, which represent the as-isolated (unready) Ni-A (S = (1)/(2)) enzyme state, disclose a nonprotein ligand (labeled as X) bridging the two metals. The bridging atom was suggested to be an oxygenic (O(2)(-) or OH(-)) species in Dg Hase and an inorganic sulfide in DvM Hase. To determine the nature and chemical characteristics of the Ni-X-Fe bridging ligand in Dg Hase, we have performed 35 GHz CW (17)O ENDOR measurements on the Ni-A form of the enzyme, exchanged into H(2)(17)O, on the active Ni-C (S = (1)/(2)) form prepared by H(2)-reduction of Ni-A in H(2)(17)O, and also on Ni-A formed by reoxidation of Ni-C in H(2)(17)O. In the native state of the protein (Ni-A), the bridging ligand does not exchange with the H(2)(17)O solvent. However, after a reduction/reoxidation cycle (Ni-A --> Ni-C --> Ni-A), an (17)O label is introduced at the active site, as seen by ENDOR. Detailed analysis of a 2-D field-frequency plot of ENDOR spectra taken across the EPR envelope of Ni-A((17)O) shows that the incorporated (17)O has a roughly axial hyperfine tensor, A((17)O) approximately [5, 7, 20] MHz, discloses its orientation relative to the g tensor, and also yields an estimate of the quadrupole tensor. The substantial isotropic component (a(iso)((17)O) approximately 11 MHz) of the hyperfine interaction indicates that a solvent-derived (17)O is indeed a ligand to Ni and thus that the bridging ligand X in the Ni-A state of Dg Hase is indeed an oxygenic (O(2)(-) or OH(-)) species; comparison with earlier EPR results by others indicates that the same holds for Ni-B. The small (57)Fe hyperfine coupling seen previously for Ni-A (A((57)Fe) approximately 0.9 MHz) is now shown to persist in Ni-C, A((57)Fe) approximately 0.8 MHz. However, the (17)O signal is lost upon reductive activation to the Ni-C state; reoxidation to Ni-A leads to the reappearance of the signal. Consideration of the electronic structure of the EPR-active states of the dinuclear center leads us to suggest that the oxygenic bridge in Ni-A(B) is lost in Ni-C and is re-formed from solvent upon reoxidation to Ni-A. This implies that the reductive activation to Ni-C opens Ni/Fe coordination sites which may play a central role in the enzyme's activity.  相似文献   

9.
The speed and angular distribution of O atoms arising from the photofragmentation of C(5)H(8)-O(2), the isoprene-oxygen van der Waals complex, in the wavelength region of 213-277 nm has been studied with the use of a two-color dissociation-probe method and the velocity map imaging technique. Dramatic enhancement in the O atoms photo-generation cross section in comparison with the photodissociation of individual O(2) molecules has been observed. Velocity map images of these "enhanced" O atoms consisted of five channels, different in their kinetic energy, angular distribution, and wavelength dependence. Three channels are deduced to be due to the one-quantum excitation of the C(5)H(8)-O(2) complex into the perturbed Herzberg III state ((3)Δ(u)) of O(2). This excitation results in the prompt dissociation of the complex giving rise to products C(5)H(8)+O+O when the energy of exciting quantum is higher than the complex photodissociation threshold, which is found to be 41740 ± 200 cm(-1) (239.6±1.2 nm). This last threshold corresponds to the photodissociation giving rise to an unexcited isoprene molecule. The second channel, with threshold shifted to the blue by 1480 ± 280 cm(-1), corresponds to dissociation with formation of rovibrationally excited isoprene. A third channel was observed at wavelengths up to 243 nm with excitation below the upper photodissociation threshold. This channel is attributed to dissociation with the formation of a bound O atom C(5)H(8)-O(2) + hv → C(5)H(8)-O(2)((3)Δ(u)) → C(5)H(8)O + O and∕or to dissociation of O(2) with borrowing of the lacking energy from incompletely cooled complex internal degrees of freedom C(5)H(8) (?)-O(2) + hv → C(5)H(8) (?)-O(2)((3)Δ(u)) → C(5)H(8) + O + O. The kinetic energy of the O atoms arising in two other observed channels corresponds to O atoms produced by photodissociation of molecular oxygen in the excited a?(1)Δ(g) and b?(1)Σ(g) (+) singlet states as the precursors. This indicates the formation of singlet oxygen O(2)(a?(1)Δ(g)) and O(2)(b?(1)Σ(g) (+)) after excitation of the C(5)H(8)-O(2) complex. Cooperative excitation of the complex with a simultaneous change of the spin of both partners (1)X-(3)O(2) + hν → (3)X-(1)O(2) → (3)X + (1)O(2) is suggested as a source of singlet oxygen O(2)(a?(1)Δ(g)) and O(2)(b?(1)Σ(g) (+)). This cooperative excitation is in agreement with little or no vibrational excitation of O(2)(a?(1)Δ(g)), produced from the C(5)H(8)-O(2) complex as studied in the current paper as well as from the C(3)H(6)-O(2) and CH(3)I-O(2) complexes reported in our previous paper [Baklanov et al., J. Chem. Phys. 126, 124316 (2007)]. The formation of O(2)(a?(1)Δ(g)) from C(5)H(8)-O(2) was observed at λ(pump) = 213-277 nm with the yield going down towards the long wavelength edge of this interval. This spectral profile is interpreted as the red-side wing of the band of a cooperative transition (1)X-(3)O(2) + hν → (3)X(T(2))-(1)O(2)(a?(1)Δ(g)) in the C(5)H(8)-O(2) complex.  相似文献   

10.
High-spin Fe(IV)-oxo species are known to be kinetically competent oxidants in non-heme iron enzymes. The properties of these oxidants are not as well understood as the corresponding intermediate-spin oxidants of heme complexes. The present work gives a detailed characterization of the structurally similar complexes [Fe(IV)H(3)buea(O)](-), [Fe(III)H(3)buea(O)](2-), and [Fe(III)H(3)buea(OH)](-) (H(3)buea = tris[(N'-tert-butylureaylato)-N-ethylene]aminato) using M?ssbauer and dual-frequency/dual-mode electron paramagnetic resonance (EPR) spectroscopies. The [Fe(IV)H(3)buea(O)](-) complex has a high-spin (S = 2) configuration imposed by the C(3)-symmetric ligand. The EPR spectra of the [Fe(IV)H(3)buea(O)](-) complex presented here represent the first documented examples of an EPR signal from an Fe(IV)-oxo complex, demonstrating the ability to detect and quantify Fe(IV) species with EPR spectroscopy. Quantitative simulations allowed the determination of the zero-field parameter, D = +4.7 cm(-1), and the species concentration. Density functional theory (DFT) calculations of the zero-field parameter were found to be in agreement with the experimental value and indicated that the major contribution to the D value is from spin-orbit coupling of the ground state with an excited S = 1 electronic configuration at 1.2 eV. (17)O isotope enrichment experiments allowed the determination of the hyperfine constants ((17)O)A(z) = 10 MHz for [Fe(IV)H(3)buea(O)](-) and ((17)O)A(y) = 8 MHz, ((17)O)A(z) = 12 MHz for [Fe(III)H(3)buea(OH)](-). The isotropic hyperfine constant (((17)O)A(iso) = -16.8 MHz) was derived from the experimental value to allow a quantitative determination of the spin polarization (ρ(p) = 0.56) of the oxo p orbitals of the Fe-oxo bond in [Fe(IV)H(3)buea(O)](-). This is the first experimental determination for non-heme complexes and indicates significant covalency in the Fe-oxo bond. High-field M?ssbauer spectroscopy gave an (57)Fe A(dip) tensor of (+5.6, +5.3, -10.9) MHz and A(iso) = -25.9 MHz for the [Fe(IV)H(3)buea(O)](-) complex, and the results of DFT calculations were in agreement with the nuclear parameters of the complex.  相似文献   

11.
One electron paramagnetic parent osazone complex of rhodium of type trans-Rh(L(NHPh)H(2))(PPh(3))(2)Cl(2) (1), defined as an osazone anion radical complex of rhodium(III), trans-Rh(III)(L(NHPh)H(2)(?-))(PPh(3))(2)Cl(2), 1((t-RhL?)), with a minor contribution (~2%) of rhodium(II) electromer, trans-Rh(II)(L(NHPh)H(2))(PPh(3))(2)Cl(2), 1((t-Rh?L)), and their nonradical congener, trans-[Rh(III)(L(NHPh)H(2))(PPh(3))(2)Cl(2)]I(3) ([t-1](+)I(3)(-)), have been isolated and are substantiated by spectra, bond parameters, and DFT calculations on equivalent soft complexes [Rh(L(NHPh)H(2))(PMe(3))(2)Cl(2)] (3) and [Rh(L(NHPh)H(2))(PMe(3))(2)Cl(2)](+) (3(+)). 1 is not stable in solution and decomposes to [t-1](+) and a new rhodium(I) osazone complex, [Rh(I)(L(NHPh)H(2))(PPh(3))Cl] (2). 1 absorbs strongly at 351 nm due to MLCT and LLCT, while [t-1](+) and 2 absorb moderately in the range of 300-450 nm, respectively, due to LMCT and MLCT elucidated by TD-DFT calculations on 3((t-RhL?)), [t-3](+), and Rh(I)(L(NHPh)H(2))(PMe(3))Cl (4). EPR spectra of solids at 295 and 77 K, and dichloromethane-toluene frozen glass at 77 K of 1 are similar with g = 1.991, while g = 2.002 for the solid at 25 K. The EPR signal of 1 in dichloromethane solution is weaker (g = 1.992). In cyclic voltammetry, 1 displays two irreversible one electron transfer waves at +0.13 and -1.22 V, with respect to Fc(+)/Fc coupling, due to oxidation of 1((t-RhL?)) to [t-1](+) at the anode and reduction of rhodium(III) to rhodium(II), i.e., [t-1](+) to electromeric 1((t-Rh?L)) at the cathode.  相似文献   

12.
The oxidation behavior of Y-931, a potent atypical antipsychotic drug, was compared with that of clozapine and olanzapine. In two enzymatic systems (horseradish peroxidase (HRP)/glutathione (GSH) and HRP/H(2)O(2)/GSH) which generate thiyl radicals, clozapine markedly strengthened the electron paramagnetic resonance (EPR) signal for the radical. Olanzapine, Y-931 and the major metabolites (compounds 1-3) had no or minimal effect on the intensity of this signal. In addition, the redox potential values for the three derivatives were in accord with the EPR spin trapping results. In toxicological experiments in human leukocytes, a concentration-dependent toxicity was observed when neutrophils were incubated with clozapine (1-10 micromol/l) and H(2)O(2) (1 mmol/l). However, Y-931 and olanzapine did not show remarkable toxicity under the conditions.  相似文献   

13.
In this study, EPR investigation of gamma-irradiated calcium succinate monohydrate [CaC(4)H(4)O(4)·H(2)O] single crystal has been carried out at room temperature. The compound crystallizes in monoclinic symmetry with the unit-cell dimensions: a=11.952(2)?, b=9.691(2)?, c=11.606(2)?, β=108.81(1)°. The observed lines in the EPR spectra reveal the formation of C˙H(α)CH(β1)H(β2) radical after irradiating [CaC(4)H(4)O(4)·H(2)O] single crystal. The angular variations of EPR spectra have shown that the radical type has only one site in three perpendicular planes. The principal g and a values and direction cosines of C˙H(α)CH(β1)H(β2) radical have been determined.  相似文献   

14.
This article reports on the activation of dioxygen on nickel(I) dispersed inside the nanopores of the ZSM-5 zeolite, which can be regarded as a heterogeneous mimetic system (zeozyme) for Ni-bearing enzymes. The side-on η(2)-coordination of the resulting nickel-bound superoxo adduct was ascertained by detailed analysis of the EPR spectra of both (16)O(2) and (17)O(2) species supported by computer simulations of the spectra and relativistic DFT calculations of the EPR signatures. Molecular analysis of the g and A((17)O) tensors (g(xx) = 2.0635, g(yy) = 2.0884, g(zz) = 2.1675; |A(xx)| ≈ 1.0 mT, |A(yy)| = 5.67 mT, |A(zz)| ≈ 1.3 mT) and quantum chemical modeling revealed an unusual electronic and magnetic structure of the observed adduct (with g(zz)(g(max)) > g(yy)(g(mid)) > g(xx)(g(min)) and the largest O-17 hyperfine splitting along the g(mid) direction) in comparison to the known homogeneous and enzymatic nickel-superoxo systems. It is best described as a mixed metalloradical with two supporting oxygen donor ligands and even triangular spin-density redistribution within the η(2)-{NiO(2)}(11) magnetophore. The semioccupied molecular orbital (SOMO) is constituted by highly covalent δ overlap between the out-of-plane 2p(π(g)*) MO of dioxygen and the 3d(x(2)(-y(2))) MO of nickel. By means of the extended transition state-natural orbitals for the chemical valence approach (ETS-NOCV), three distinct orbital channels (associated with σ, π, and δ overlap) of congruent and incongruent charge and spin density flows within the η(2)-{NiO(2)}(11) unit, contributing jointly to activation of the attached dioxygen, were identified. Their individual energetic relevance was quantified, which allowed for explaining the oxygen binding mechanism with unprecedented accuracy. The nature and structure sensitivity of the g tensor was rationalized in terms of the contributions due to the magnetic field-induced couplings of the relevant molecular orbitals that control the g-tensor anisotropy. The calculated O-17 hyperfine coupling constants correspond well with the experimental parameters, supporting assignment of the adduct. To the best of our knowledge, the η(2)-{NiO(2)}(11) superoxo adducts have not been observed yet for digonal mononuclear nickel(I) centers supported by oxygen donor ligands.  相似文献   

15.
Three analogues of 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO, 1) labelled with two (1-d2), five (1-d5) or seven (1-d7)2H were synthesized and used to trap the tert-butylperoxyl radical. The EPR spectra of 1-d2-OOBu(t) and 1-d7-OOBu(t) spin adducts exhibited more straightforward patterns and better signal to noise ratio than those obtained with 1 or 1-d5. The use of the easily available 1-d2 as spin trap could help significantly the analysis of the EPR signals when the signal of either superoxide or alkylperoxyl spin adduct is superimposed with the signals of other spin adducts.  相似文献   

16.
Two pro-ligands ((R)LH) comprised of an o,p-di-tert-butyl-substituted phenol covalently bonded to a benzimidazole ((Bz)LH) or a 4,5-di-p-methoxyphenyl substituted imidazole ((PhOMe)LH), have been structurally characterised. Each possesses an intramolecular O-H[dot dot dot]N hydrogen bond between the phenolic O-H group and an imidazole nitrogen atom and (1)H NMR studies show that this bond is retained in solution. Each (R)LH undergoes an electrochemically reversible, one-electron, oxidation to form the [(R)LH] (+) radical cation that is considered to be stabilised by an intramolecular O...H-N hydrogen bond. The (R)LH pro-ligands react with M(BF(4))(2).H(2)O (M = Cu or Zn) in the presence of Et(3)N to form the corresponding [M((R)L)(2)] compound. [Cu((Bz)L)(2)] (), [Cu((PhOMe)L)(2)] (), [Zn((Bz)L)(2)] and [Zn((PhOMe)L)(2)] have been isolated and the structures of .4MeCN, .2MeOH, .2MeCN and .2MeCN determined by X-ray crystallography. In each compound the metal possesses an N(2)O(2)-coordination sphere: in .4MeCN and .2MeOH the {CuN(2)O(2)} centre has a distorted square planar geometry; in .2MeCN and .2MeCN the {ZnN(2)O(2)} centre has a distorted tetrahedral geometry. The X-band EPR spectra of both and , in CH(2)Cl(2)-DMF (9 : 1) solution at 77 K, are consistent with the presence of a Cu(ii) complex having the structure identified by X-ray crystallography. Electrochemical studies have shown that each undergo two, one-electron, oxidations; the potentials of these processes and the UV/vis and EPR properties of the products indicate that each oxidation is ligand-based. The first oxidation produces [M(II)((R)L)((R)L )](+), comprising a M(ii) centre bound to a phenoxide ((R)L) and a phenoxyl radical ((R)L ) ligand; these cations have been generated electrochemically and, for R = PhOMe, chemically by oxidation with Ag[BF(4)]. The second oxidation produces [M(II)((R)L )(2)](2+). The information obtained from these investigations shows that a suitable pro-ligand design allows a relatively inert phenoxyl radical to be generated, stabilised by either a hydrogen bond, as in [(R)LH] (+) (R = Bz or PhOMe), or by coordination to a metal, as in [M(II)((R)L)((R)L )](+) (M = Cu or Zn; R = Bz or PhOMe). Coordination to a metal is more effective than hydrogen bonding in stabilising a phenoxyl radical and Cu(ii) is slightly more effective than Zn(II) in this respect.  相似文献   

17.
Kinetics of the ethynyl (C(2)H) radical reactions with H(2), D(2), CH(4) and CD(4) was studied over the temperature range of 295-396 K by a pulsed laser photolysis/chemiluminescence technique. The C(2)H radicals were generated by ArF excimer-laser photolysis of C(2)H(2) or CF(3)C(2)H and were monitored by the chemiluminescence of CH(A(2)Δ) produced by their reaction with O(2) or O((3)P). The measured absolute rate constants for H(2) and CH(4) agreed well with the available literature data. The primary kinetic isotope effects (KIEs) were determined to be k(H(2))/k(D(2)) = 2.48 ± 0.14 and k(CH(4))/k(CD(4)) = 2.45 ± 0.16 at room temperature. Both of the KIEs increased as the temperature was lowered. The KIEs were analyzed by using the variational transition state theory with semiclassical small-curvature tunneling corrections. With anharmonic corrections on the loose transitional vibrational modes of the transition states, the theoretical predictions satisfactorily reproduced the experimental KIEs for both C(2)H + H(2)(D(2)) and C(2)H + CH(4)(CD(4)) reactions.  相似文献   

18.
The surface interrogation mode of scanning electrochemical microscopy (SI-SECM) was used for the detection and quantification of adsorbed hydroxyl radical ˙OH((ads)) generated photoelectrochemically at the surface of a nanostructured TiO(2) substrate electrode. In this transient technique, a SECM tip is used to generate in situ a titrant from a reversible redox pair that reacts with the adsorbed species at the substrate. This reaction produces an SECM feedback response from which the amount of adsorbate and its decay kinetics can be obtained. The redox pair IrCl(6)(2-/3-) offered a reactive, selective and stable surface interrogation agent under the strongly oxidizing conditions of the photoelectrochemical cell. A typical ˙OH((ads)) saturation coverage of 338 μC cm(-2) was found in our nanostructured samples by its reduction with the electrogenerated IrCl(6)(3-). The decay kinetics of ˙OH((ads)) by dimerization to produce H(2)O(2) were studied through the time dependence of the SI-SECM signal and the surface dimerization rate constant was found to be ~k(OH) = 2.2 × 10(3) mol(-1) m(2) s(-1). A radical scavenger, such as methanol, competitively consumes ˙OH((ads)) and yields a shorter SI-SECM transient, where a pseudo-first order rate analysis at 2 M methanol yields a decay constant of k'(MeOH) ~ 1 s(-1).  相似文献   

19.
The compounds M(2)(O(2)C(t)Bu)(4) and M(2)(O(2)CC(6)H(5))(4), where M = Mo or W, have been examined by femtosecond time-resolved IR (fs-TRIR) spectroscopy in tetrahydrofuran with excitation into the singlet metal-to-ligand charge-transfer ((1)MLCT) band. In the region from 1500 to 1600 cm(-1), a long-lived excited state (>2 ns) has been detected for the compounds M(2)(O(2)C(t)Bu)(4) and Mo(2)(O(2)C-C(6)H(5))(4) with an IR absorption at ~1540 cm(-1) assignable to the asymmetric CO(2) stretch, ν(as)(CO(2)), of the triplet metal-metal δ-δ star ((3)MM δδ*) state. The fs-TRIR spectra of W(2)(O(2)C-C(6)H(5))(4) are notably different and are assigned to decay of the MLCT states. In (3)MM δδ*, the removal of an electron from the δ orbital reduces MM δ to CO(2) π* back-bonding and causes a shift of ν(as)(CO(2)) to higher energy by ~30-60 cm(-1), depending on the metal. TRIR spectroscopy also provides evidence for M(2)(O(2)C(t)Bu)(4), where M = Mo or W, having MM δδ* S(1) states with ν(as)(CO(2)) distinct from those of the (3)MM δδ* states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号