首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Treatment of 1,2-diphosphinobenzene with [Au(C6F5)3(tht)] leads to the diphosphane derivative [{Au(C6F5)3}(1,2-PH2C6H4PH2)] (1), which further reacts with other pentafluorophenylgold(III) reagents in the presence of acetylacetonate as deprotonating agent to afford phosphane-phosphide complexes. The noncyclic PPN[{Au(C6F5)3}2(1,2-PHC6H4PH2)] (2; PPN = bis(triphenylphosphine)iminium) has been shown to be a useful starting material for the synthesis of higher nuclearity cyclic or noncyclic diphosphide or even diphosphodiide derivatives through similar reactions. The crystal structures of the trinuclear anionic NBu4[{Au(C6F5)3}(1,2-PHC6H4PH){Au(C6F5)2Cl}{mu-Au(C6F5)2}] (3) and the hexanuclear [{Au(C6F5)3}(1,2-PC6H4P){Au(C6F5)3}{mu-M(dppe)M}2] (M = Au (12), Ag (13)) have been established by X-ray diffraction methods, the last complexes having a bicyclic ring containing three intramolecular interactions between the M(I) centres.  相似文献   

2.
In this paper we describe the synthesis and reactivity of the diphenylphosphine derivatives [Au(C6F5)(PPh2H)] and trans-[Au(C6F5)2(PPh2H)2]ClO4. Reactions of the latter or the neutral [Au(C6F5)3(PPh2H)] with the appropriate Group 11 metal reagents (M = Au, Ag, Cu) in the presence of acetylacetonate afford a series of novel Au(III)-M phosphido-bridged complexes, which have been scarcely represented to date. The crystal structure of the tetranuclear [(Au(C6F5)2(mu-PPh2)2Ag)2] and the dinuclear [Au(C6F5)3(mu-PPh2)M(PPh3)] (M = Au,Ag) complexes were established by X-ray diffraction methods. The synthesis and deprotonating activity of the anionic gold(III) complex PPN[Au(C6F5)3(acac)] (PNN = [N(PPh3)2]+) was studied.  相似文献   

3.
Four luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes appended with an indole moiety [Ir(N∧C)2(N∧N)] (PF6) (HN∧C = 2-phenylpyridine, Hppy; N∧N = 2-(N-(2-(indole-3-acetamido)ethyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC2indole (1a), N∧N = 2-(N-(6-(indole-3-acetamido)hexyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC6indole (1b); HN∧C = 7,8-benzoquinoline, Hbzq, N∧N = dpqC2indole (2a), N∧N = dpqC6indole (2b)) have been synthesized and characterized. Upon irradiation, all the complexes displayed moderately intense and long-lived luminescence under ambient conditions and in 77 K glass. On the basis of the photophysical data, the emission of the complexes has been assigned to an excited state of triplet metal-to-ligand charge-transfer (3MLCT) ((dπ(Ir) → π*(N∧N)) character. Cyclic voltammetric studies revealed indole-based and iridium-based oxidations at ca. +1.10 V and +1.24 V vs. SCE, respectively, and ligand-based reductions at ca. ?1.07 to ?2.29 V vs. SCE. The interactions of the complexes with an indole-binding protein, bovine serum albumin (BSA), have been examined by emission titrations.  相似文献   

4.
Unusual AuI-AgI heterometallic complexes [Au5Ag8(mu-dppm)4{1,2,3-C6(C6H4R-4)3}(CCC6H4R-4)7]3+ (R = H 1, CH3 2, But 3) were isolated by reactions of polymeric silver arylacetylides (AgCCC6H4R-4)n with binuclear gold component [Au2(mu-dppm)2(MeCN)2]2+ (dppm = bis(diphenylphosphino)methane), in which cyclotrimerization of arylacetylide -CCC6H4R-4 affords trianion {1,2,3-C6(C6H4R-4)3}3- with an unprecedented mu5-bonding mode. Compounds 1(SbF6)3-3(SbF6)3 exhibit intense photoluminescence derived from an MLCT (Au5Ag8 --> CCC6H4R-4) transition, mixed with a metal cluster-centered excited states.  相似文献   

5.
Rodlike gold(I) complexes, [Au(C6F4OCmH2m+1)(C(triple bond)NC6H4C6H4OCnH2n+1)] (m=2, n=4, 10; m=6, n=10; m=10, n=6, 10), display interesting features. They are liquid crystals and show photoluminescence in the mesophase, as well as in the solid state and in solution. The single-crystal, X-ray diffraction structure of [Au(C6F4OC2H5)(C(triple bond)NC6H4C6H4OC4H9)] confirms its rodlike structure, with a linear coordination around the gold atom, and reveals the absence of any Au...Au interactions (such interactions are often present in luminescent gold complexes). Well-defined, intermolecular Fortho...Fmeta interactions, with remarkably short intermolecular FF distances (2.66 A), are observed; these interactions seem to be responsible for the crystal packing, which consists of an antiparallel arrangement of molecules. Experiments under different conditions support the explanation that the photoluminescence has an intramolecular origin.  相似文献   

6.
The remarkable, vapor-induced transformation of the yellow polymorphs of [(C(6)H(11)NC)(2)Au(I)](AsF(6)) and [(C(6)H(11)NC)(2)Au(I)](PF(6)) into the colorless forms are reported along with related studies of the crystallization of these polymorphs. Although the interconversion of these polymorphs is produced by vapor exposure, molecules of the vapor are not incorporated into the crystals. Thus, our observations may have broad implications regarding the formation and persistence of other crystal polymorphs where issues of stability and reproducibility of formation exist. Crystallographic studies show that the colorless polymorphs, which display blue luminescence, are isostructural and consist of linear chains of gold(I) cations that self-associate through aurophilic interactions. Significantly, the yellow polymorph of [(C(6)H(11)NC)(2)Au(I)](AsF(6)) is not isostructural with the yellow polymorph of [(C(6)H(11)NC)(2)Au(I)](PF(6)). Both yellow polymorphs exhibit green emission and have the gold cations arranged into somewhat bent chains with significantly closer Au···Au separations than are seen in the colorless counterparts. Luminescence differences in these polymorphs clearly enhance the ability to detect and monitor their phase stability.  相似文献   

7.
用MP2和CIS方法分别优化了H3PAuPh(a)、对位(H3PAu)2C6H4(b)和间位(H3PAu)3C6H3(c)的基态和激发态结构. 计算结果表明, [Au(PH3)]+的引入使Au(Ⅰ)配合物的苯环上的电子云密度降低, 削弱了苯基内C—C键的成键作用. 计算得到配合物a~c的最低能量磷光发射分别为443, 461和429 nm, 均属于苯基为π*→π跃迁本质, 并伴有Au(6p)→π(Ph)和Au(6p)→Au(5d)电荷转移性质. 与苯的最低能量磷光发射(413 nm)相比揭示了配合物a~c的发光过程是[Au(PH3)]+修饰的π*→π发光机制.  相似文献   

8.
用从头计算法研究H3PAuC≡CPh(a), H3PAu(C≡C-1,4-C6H4)Ph(b)和H3PAu(C≡C-1,4-C6H4)C≡CPh(c) 3种Au(Ⅰ)配合物的磷光发光性质, 使用MP2和CIS方法分别优化配合物的基态和激发态的几何结构. 计算结果表明, 激发态的电子跃迁减弱了Au与配体的成键作用. 由计算得出3种Au(Ⅰ)配合物的最低能量磷光发射光谱分别为530, 610和615 nm, 皆由A3A′→1A′产生, 属于Au(6p)→C(2p)的电荷转移(MLCT)修饰下的pπ*(C≡C, )→pπ(C≡C, )跃迁本质, 并伴有Au(6p)→Au(5d)的金属中心电荷转移(MCCT)性质. 随着分子增长, 其激发态轨道中Au的p轨道成分减少, 相应的最低能量磷光发射的波长红移.  相似文献   

9.
Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).  相似文献   

10.
We have studied ion and electron irradiation of self-assembled monolayers (SAMs) of 2-(4'-methyl-biphenyl-4yl)-ethanethiol (BP2, CH3-C6H4C6H4CH2CH2-SH), phenyl mercaptan (PEM, C6H5CH2CH2-SH), and 4'-methyl-biphenyl-4-thiol (BP0, CH3-C6H4C6H4-SH) deposited on Au(111) substrates. Desorption of neutral particles from PEM/Au and BP2/Au was investigated using laser ionization in combination with mass spectrometry. The ion-induced damage of both BP2 and PEM SAMs is very efficient and interaction with a single ion leads to the modification of tens of molecules. This feature is the result of a desorption process caused by a chemical reaction initiated by an ion impact. Both for ions and electrons, experiments indicate that the possibility for scission of the Au-S bond strongly depends on the chemical nature of the SAM system. We attribute the possible origin of this effect to the orientation of the Au-S-C angle or adsorption sites of molecules. The analysis of electron-irradiated PEM/Au and BP2/Au, using ion-initiated laser probing, enabled measurements of the cross section for the electron-induced damage of the intact molecule or specific fragment. Analysis of electron-irradiated BP0/Au by using time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides direct evidence for the quasi-polymerization process induced by electron irradiation.  相似文献   

11.
Dias HV  Flores JA 《Inorganic chemistry》2007,46(15):5841-5843
The synthesis and X-ray structures of gold(I) adducts supported by beta-diketiminates have been reported. {[HC{(H)C(2,4,6-Br(3)C(6)H(2))N}(2)]Au}(2) and {[HC{(H)C(Dipp)N}(2)]Au}(2) [Dipp = 2,6-(i-Pr)(2)C(6)H(3)] are easily isolable solids and feature 12-membered macrocyclic ring structures. beta-Diketiminate ligands adopt a W-shaped conformation. Gold atoms are bonded to the nitrogen atoms in a linear fashion. (1)H NMR signals corresponding to the protons at the beta-diketiminate ligand beta-C position of the gold adducts appear at a notably high downfield region.  相似文献   

12.
Reaction of (C6H3-2-AsPh2-n-Me)Li (n = 5 or 6) with [AuBr(AsPh3)] at -78 degrees C gives the corresponding cyclometallated gold(I) complexes [Au2[(mu-C6H3-n-Me)AsPh2]2] [n = 5, (1); n = 6, (9)]. 1 undergoes oxidative addition with halogens and with dibenzoyl peroxide to give digold(II) complexes [Au2X2[(mu-C6H3-5-Me)AsPh2]2] [X = Cl (2a), Br (2b), I (2c) and O2CPh (3)] containing a metal-metal bond between the 5d9 metal centres. Reaction of 2a with AgO2CMe or of 3 with C6F5Li gives the corresponding digold(II) complexes in which X = O2CMe (4) and C6F5 (6), respectively. The Au-Au distances increase in the order 4 < 2a < 2b < 2c < 6, following the covalent binding tendency of the axial ligand. Like the analogous phosphine complexes, 2a-2c and 6 in solution rearrange to form C-C coupled digold(I) complexes [Au2X2[mu-2,2-Ph2As(5,5-Me2C6H3C6H3)AsPh2]] [X = Cl (5a), X = Br (5b), X = I (5c) and C6F5 (7)] in which the gold atoms are linearly coordinated by As and X. In contrast, the products of oxidative additions to 9 depend markedly on the halogens. Reaction of 9 with chlorine gives the gold(I)-gold(III) complex, [ClAu[mu-2-Ph2As(C6H3-6-Me)]AuCl[(6-MeC6H3)-2-AsPh2]-kappa2As,C] (10), which contains a four-membered chelate ring, Ph2As(C6H3-6-Me), in the coordination sphere of the gold(III) atom. When 10 is heated, the ring is cleaved, the product being the digold(I) complex [ClAu[mu-2-Ph2As(C6H3-6-Me)]Au[AsPh2(2-Cl-3-Me-C6H3)]] (11). Reaction of 9 with bromine at 50 degrees C gives a monobromo digold(I) complex (12), which is similar to 11 except that the 2-position of the substituted aromatic ring bears hydrogen instead halogen. Reaction of 9 with iodine gives a mixture of a free tertiary arsine, (2-I-3-MeC6H3)AsPh2 (13), a digold diiodo compound (14) analogous to 11, and a gold(I)-gold(III) zwitterionic complex [I2Au(III)[(mu-C6H3-2-AsPh2-6-Me)]2Au(I)] (15) in which the bridging units are arranged head-to-head between the metal atoms. The structures of 2a-2c and 4-15 have been determined by single-crystal X-ray diffraction analysis. The different behaviour of 1 and 9 toward halogens mirrors that of their phosphine analogues; the 6-methyl substituent blocks C-C coupling of the aryl residues in the initially formed oxidative addition product. In the case of 9, the greater lability of the Au-As bond in the initial oxidative addition product may account for the more complex behaviour of this system compared with that of its phosphine analogue.  相似文献   

13.
The structures and formation mechanisms of the important intermediate phenyl-coinage metal complexes [C(6)H(5)M(m)](-) (M==Ag, Au, m = 1-3) are investigated at B3LYP//6-311G(d, p)/Lanl2dz level using Gaussian 03 program. The adiabatic electron affinity and vertical dissociation energy of [M(m)](-) and [C(6)H(5)M(m)](-) are calculated, which are excellently coincident with the experimental determination. The C(6)H(5) group bonds on metal clusters through M--C sigma bond in the complex [C(6)H(5)M(m)](-). The complexes [C(6)H(5)M(m)](-) (M==Ag, Au; m = 2-3) are generated through a stepwise reaction. The first step is a direct insertion reaction between [M(m)](-) (M==Ag, Au, m = 1-3) and C(6)H(6,) which leads to the generation of intermediate [C(6)H(5)M(m)H](-) (m = 1-3) with the activation and cleavage of C--H bond. The second step is the neutral metal atom abstracting the H atom to yield the product [C(6)H(5)M(m)](-).  相似文献   

14.
The electronic properties of cation radical salts derived from organometallic mixed-ligand complexes [(ppy)Au(S-S)](ppy- = C-dehydro-2-phenylpyridine(-); S-S(2-) = dithiolene ligand) with Au(III)-C sigma-bond were investigated. A 2:1 salt complex [(ppy)Au(C8H4S8)]2[PF6] (C8H4S8(2-) = 2-((4,5-ethylenedithio)-1,3-dithiole-2-ylidene)-1,3-dithiole-4,5-dithiolate(2-)) exhibited semiconductive behavior under ambient pressure (rho rt = 2.6 Omega cm, Ea = 0.03 eV). Magnetic measurements show that it is a Mott insulator close to the metal-insulator boundary. Raman and infrared spectra have revealed that the complex has a quasi-one-dimensional dimeric structure consisting of uniformly charged donor molecules. The complex exhibits metallic behavior at pressures above 0.8 GPa. In contrast, a similar compound [(ppy)Au(C8H4S6O2)]2[BF4] (C8H4S6O2(2-) = 2-((4,5-ethylenedioxy)-1,3-dithiole-2-ylidene)-1,3-dithiole-4,5-dithiolate(2-)) is a band insulator.  相似文献   

15.
Flores JA  Dias HV 《Inorganic chemistry》2008,47(11):4448-4450
A rare gold(I) ethylene complex and the closely related copper(I) ethylene adduct have been isolated using [N{(C3F7)C(2,6-Cl2C6H3)N}2]- as the supporting ligand. [N{(C3F7)C(2,6-Cl2C6H3)N}2]Au(C2H4) (1) is an air-stable solid. It features a U-shaped triazapentadienyl ligand backbone and a three-coordinate, trigonal-planar gold center. The copper(I) adduct [N{(C3F7)C(2,6-Cl2C6H3)N}2]Cu(C2H4) (2) also has a similar structure. The 13C NMR signal corresponding to the ethylene carbons of 1 appears at about 64 ppm upfield from the free ethylene, while the ethylene carbons of 2 show a relatively smaller (39 ppm) upfield shift. [N{(C3F7)C(2,6-Cl2C6H3)N}2]M(C2H4) (M=Cu, Au) mediate carbene-transfer reactions from ethyl diazoacetate to saturated and unsaturated hydrocarbons.  相似文献   

16.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

17.
Treatment of Au(SC(4)H(8))Cl with a stoichiometric amount of hydroxyaliphatic alkyne in the presence of NEt(3) results in high-yield self-assembly of homoleptic clusters (AuC(2)R)(10) (R = 9-fluorenol (1), diphenylmethanol (2), 2,6-dimethyl-4-heptanol (3), 3-methyl-2-butanol (4), 4-methyl-2-pentanol (4), 1-cyclohexanol (6), 2-borneol (7)). The molecular compounds contain an unprecedented catenane metal core with two interlocked 5-membered rings. Reactions of the decanuclear clusters 1-7 with gold-diphosphine complex [Au(2)(1,4-PPh(2)-C(6)H(4)-PPh(2))(2)](2+) lead to octanuclear cationic derivatives [Au(8)(C(2)R)(6)(PPh(2)-C(6)H(4)-PPh(2))(2)](2+) (8-14), which consist of planar tetranuclear units {Au(4)(C(2)R)(4)} coupled with two fragments [AuPPh(2)-C(6)H(4)-PPh(2)(AuC(2)R)](+). The titled complexes were characterized by NMR and ESI-MS spectroscopy, and the structures of 1, 13, and 14 were determined by single-crystal X-ray diffraction analysis. The luminescence behavior of both Au(I)(10) and Au(I)(8) families has been studied, revealing efficient room-temperature phosphorescence in solution and in the solid state, with the maximum quantum yield approaching 100% (2 in solution). DFT computational studies showed that in both Au(I)(10) and Au(I)(8) clusters metal-centered Au → Au charge transfer transitions mixed with some π-alkynyl MLCT character play a dominant role in the observed phosphorescence.  相似文献   

18.
The gold(I) thiolate complexes [Au(2-SC6H4NH2)(PPh3)] (1), [PPN][Au(2-SC6H4NH2)2] (2) (PPN = PPh3=N=PPh3), and [{Au(2-SC6H4NH2)}2(mu-dppm)] (3) (dppm = PPh2CH2PPh2) have been prepared by reaction of acetylacetonato gold(I) precursors with 2-aminobenzenethiol in the appropriate molar ratio. All products are intensely photoluminescent at 77 K. The molecular structure of the dinuclear derivative 3 displays a gold-gold intramolecular contact of 3.1346(4) A. Further reaction with the organometallic gold(III) complex [Au(C6F5)3(tht)] affords dinuclear or tetranuclear mixed gold(I)-gold(III) derivatives with a thiolate bridge, namely, [(AuPPh3){Au(C6F5)3}(mu2-2-SC6H4NH2)] (4) and [(C6F5)3Au(mu2-2-SC6H4NH2)(AudppmAu)(mu2-2-SC(6)H4NH2)Au(C6F5)3] (5). X-ray diffraction studies of the latter show a shortening of the intramolecular gold(I)-gold(I) contact [2.9353(7) or 2.9332(7) A for a second independent molecule], and short gold(I)-gold(III) distances of 3.2812(7) and 3.3822(7) A [or 3.2923(7) and 3.4052(7) A] are also displayed. Despite the gold-gold interactions, the mixed derivatives are nonemissive compounds. Therefore, the complexes were studied by DFT methods. The HOMOs and LUMOs for gold(I) derivatives 1 and 3 are mainly centered on the thiolate and phosphine (or the second thiolate for complex 2), respectively, with some gold contributions, whereas the LUMO for derivative 4 is more centered on the gold(III) fragment. TD-DFT results show a good agreement with the experimental UV-vis absorption and excitation spectra. The excitations can be assigned as a S --> Au-P charge transfer with some mixture of LLCT for derivative 1, an LLCT mixed with ILCT for derivative 2, and a S --> Au...Au-P charge transfer with LLCT and MC for derivative 3. An LMCT (thiolate --> Au(III) mixed with thiolate --> Au-P) excitation was found for derivative 4. The differing nature of the excited states [participation of the gold(III) fragment and the small contribution of sulfur] is proposed to be responsible for quenching the luminescence.  相似文献   

19.
Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)].1.5TCNQ.xCH(2)Cl(2) [Q(+) = PPN(+), R = H, x = 0 (11a); Q(+) = PPN(+), R = t-Bu, x = 2 (11b); Q(+) = Bu(4)N(+), R = OC(8)H(17), x = 0 (11c)] were obtained from Q6a-c and TCNQ (1:2). The crystal structures of 5c.THF, 5e.(2)/(3)CH(2)Cl(2), 5g.CH(2)Cl(2), (PPN)6a.2Me(2)CO, and 11b were solved by X-ray diffraction studies. All the gold(I) complexes here described are photoluminescent at 77 K, and their emissions can be generally ascribed to LMMCT (Q(2)4a,c, 5a-h, 10) or LMCT (9) excited states.  相似文献   

20.
A comparative study of dipyrido-and dibenzo-substituted 1,4-diazines {dipyrido[f,h]quinoxaline (dpq), dipyrido[a,c]phenazine (dppz), 6,7-dicyanodipyrido[f,h]quinoxaline (dicnq), dibenzo[f,h]quinoxaline, dibenzo[a,c]phenazine, 6,7-dicyanodibenzo[f,h]-quinoxaline}, o-phenantroline (phen), and also of the complexes [Pt(N∧C)(N∧N)]+[(N∧C)? are deproronated forms of 2-phenylpyridine and 2-(2-thienyl)pyridine; (N∧N) is ethylenediamine, phen, dpq, dppz, dicnq] was carried out by the methods of 1H NMR, electronic absorption, and emission spectroscopy and by cyclic voltammetry. It was found that in frozen solutions of [Pt(N∧C)·(N∧N)]+ complexes the photoexcitation energy decay from two lowest in energy electronic excited states has isolated character and is localized on {Pt(N∧C)} and {Pt(N∧N)} metal-complex fragments: (d N∧C * ) and (d phen * ) [(N∧N) = phen, dpq, dicnq)] or (d N∧C * ) and (π-π diaz * ) [(N∧N) = dppz]. Thermal quenching of the luminescence from the (d phen * ) and (π-π diaz * ) states gives rise to luminescence of the complexes in liquid solutions at 293 K only from the (d N∧C * ) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号