首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refractive-index tailoring and morphological evolutions in two different thin film composite systems of gadolinia–silica (Gd2O3:SiO2) and zirconia–silica (ZrO2:SiO2) deposited through reactive electron-beam codeposition processes are discussed in this research paper. For Gd2O3:SiO2 the refractive-index tuning has been achieved from 1.45 to 2.18, whereas in the case of ZrO2:SiO2 the achieved tunable range is from 1.45 to 2.45 in the ultraviolet region. Under certain compositional mixings with lower silica fractions both the systems demonstrated relative microstructural and morphological densifications. Such evolutions were very successfully derived through phase-modulated ellipsometry and atomic force microscopy. The composition-dependent refractive-index tailoring and microstructural densifications have been investigated by adopting Tauc–Lorentz and single-effective-oscillator models. The morphological correlation functions have also very aptly supported such evolutions in these composite films. These experimental results indicate their favourable properties and applicability down to the extreme ultraviolet wavelength region of the electromagnetic spectrum. PACS 42.79.Wc; 78.66.-w; 78.20.Ci; 61.16.Ch; 42.70.-a;68.55.-a; 68.35.Bs; 81.15.Ef  相似文献   

2.
SiO2-TiO2 films [Si:Ti = 1:(0.06–2.3)] are obtained by the sol-gel method. The structural and photoluminescent properties of the films and powders heat-treated at different temperatures are studied. It is shown that after 700°C the composite consists of TiO2 crystallites that are structurally similar to anatase and distributed in an amorphous SiO2 matrix. The photoluminescence spectra have maxima at 450–500 nm. The photoluminescence intensity depends on the treatment temperature and TiO2 content. __________ Translated from Zhurnal Prikladnoi Spektroskopii Vol. 74, No. 3, pp. 357–361, May–June, 2007.  相似文献   

3.
Iron and magnetite nanoparticles in zirconium oxide matrix have been prepared by a heat treatment of a mixture of nanocrystalline iron oxide and zirconium oxide or zirconium hydride powders. Changes in the phase composition of the as-mixed powders during annealing in vacuum or in hydrogen were monitored using thermomagnetic curves. Structure and phase composition of the final products were characterized by X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Influence of the composition of the original mixture and quality of the annealing atmosphere on the final properties of the composites are discussed.  相似文献   

4.
Silica-coated Mn-doped CdS nanocrystals were synthesized by use of a reverse-micelle method. Transmission electron microscopy, X-ray diffraction and electron paramagnetic resonance were adopted to characterize the samples, and their magnetic properties were studied via superconducting quantum interference device magnetometry. The samples exhibit anomalous ferromagnetic property at low temperature. The CdS: Mn nanocrystals dispersed in a silica matrix exhibit an obvious hysteresis loop shift toward the direction of the magnetic field; by contrast, the nanocrystals coated with compact SiO2 shell layers display a symmetric hysteresis loop. The shell layers are supposed to be responsible for the distinct magnetic behaviors.  相似文献   

5.
Dielectric properties of the composites based on nanodisperse silica hydrosol and ferroelectric triglycinesulfate (TGS) are investigated. The studies allow us to expect the presence of the ferroelectric state in the composites.  相似文献   

6.
Glassy LiPO3/crystalline Al2O3 and glassy LiPO3/crystalline ZrO2 (0–12.5 vol.% of oxide fillers) composite solid electrolytes have been prepared by glass matrix softening. Their thermal and transport properties have been investigated by differential scanning calorimetry (DSC) and impedance spectroscopy methods. The addition of ZrO2 leads to a decrease in the crystallization temperature of LiPO3 glass. It was found that the conductivity behavior depends on the nature of the dispersed addition. In the case of the Al2O3 addition, the increase in the electrical conductivity is observed. The ionic conductivity of the LiPO3/10% Al2O3 composite reaches 5.8 × 10?8 S/cm at room temperature. In contrast, the conductivity in the LiPO3/ZrO2 composite system decreases.  相似文献   

7.
The correlation between temperature treatment conditions and the ratio of components in nanostructured fibrous powders with a composition of ZrO2-Y2O3-Al2O3 and their porous crystal structure and physicochemical properties is studied. The dependences of the ratio between zirconia tetragonal and monoclynic phases on the treatment temperature and the alumina content are found to have a nonmonotonic character. The growth of zirconia crystallite size is suppressed by introduced nanocrystalline alumina in a temperature range of 600–1200°C, which is caused by the processes of ternary solid solution formation. The bulk and picnometric density values of materials are proportional to the temperature of heat treatment. The temperature dependence of the specific surface and the size of oxide grain particles has an inversely proportional character. With increasing alumina content in the powders, the specific surface increases, while the picnometric and bulk densities decrease.  相似文献   

8.
Bimetallic PdAu nanoparticles on SiO2 substrate were produced by a sequential room-temperature sputtering deposition method. By the atomic force microscopy technique we studied the nanoparticles self-organization mechanisms in various conditions. First, Pd nucleation and growth proceeds at the substrate defects and the Pd nanoparticles density increase rapidly. During the second sputtering deposition, Au atoms adsorb on the SiO2 and diffuse toward Pd nanoparticles without forming new nuclei. The Au atoms are trapped by the preformed Pd nanoparticles, forming PdAu bimetallic nanoparticles which size increases. Furthermore, fixing the amount of deposited Pd and increasing the amount of deposited Au, we analyzed the evolution of the PdAu film surface morphology: we observe that the PdAu grows initially as three-dimensional islands; then the PdAu film morphology evolves from compact three-dimensional islands to partially coalesced worm-like structures, followed by a percolation morphology and finally to a continuous and rough film. The application of the interrupted coalescence model allowed us to evaluate the critical mean island diameter R c ≈ 2.8 nm for the partial coalescence process. The application of the dynamic scaling theory of growing interfaces allowed us to evaluate the dynamic growth exponent β = 0.21 ± 0.01 from the evolution of the film surface roughness. Finally, fixing the amount of deposited Pd and Au we studied the self-organization mechanism of the PdAu nanoparticles induced by thermal processes performed in the 973–1173 K temperature range. The observed kinetic growth mechanism is consistent with a surface diffusion-limited ripening of the nanoparticles with a temperature-dependent growth exponent. The dependence of the growth exponent on the temperature is supposed to be linked to the variation with the temperature of the characteristics of the PdAu alloy. The activation energy for the surface diffusion process was evaluated in 0.54 ± 0.03 eV.  相似文献   

9.
Electrical and dielectric properties of conducting polypyrrole–wide band gap silica (PPY–SiO2) nanocomposites have been investigated as a function of temperature and frequency for different concentrations of polypyrrole. The average grain size of the nanocomposites is in the range of 40–80 nm. Impedance spectra reveal two distorted semicircles corresponding to grain and grain boundary effects. The magnitude of conductivity and its temperature variation are significantly different from polypyrrole and silica. A very large dielectric constant of about 4800 at 30 kHz and at room temperature has been observed for the highest concentration of silica. Inhomogeneous behavior of nanocomposites gives rise to high dielectric constant.  相似文献   

10.
The possibility of mechanical detection of Casimir friction with the use of a noncontact atomic force microscope is discussed. A SiO2 probe tip located above a graphene-coated SiO2 substrate is subjected to the frictional force caused by a fluctuating electromagnetic field produced by a current in graphene. This frictional force will create the bend of a cantilever, which can be measured by a modern noncontact atomic force microscope. Both the quantum and thermal contributions to the Casimir frictional force can be measured using this experimental setup. This result can also be used to mechanically detect Casimir friction in micro- and nanoelectromechanical systems.  相似文献   

11.
The Raman spectra of the (GaN)129, (SiO2)86, and (GaN)54(SiO2)50 nanoparticles were calculated using the molecular dynamics method. The spectrum of (SiO2)86 had three broad bands only, whereas the Raman spectrum of (GaN)129 contained a large number of overlapping bands. The form of the Raman spectrum of (GaN)54(SiO2)50 was determined by the arrangement of the GaN and SiO2 components in it. The nanoparticle with a GaN nucleus had a continuous fairly smooth spectrum over the frequency range 0 ≤ ω ≤ 600 cm−1, whereas the spectrum of the nanoparticle with a SiO2 nucleus contained well-defined bands caused by vibrations of groups of atoms of different kinds and atoms of the same kind.  相似文献   

12.
This paper reports a systematic investigation of the growth and attachment of small gold nanoparticles to the functionalized surface of larger silica nanoparticles by three different methods. Nearly monodispersed silica particles and gold nanoparticles were prepared by sol-gel method. The size of the particle could be altered by changing the concentration of reactants, temperature and the time for which they react. The nanocoreshell particles prepared by three different methods were studied using scanning electron microscopy (SEM), UV-vis spectroscopy and Fourier transform infrared spectroscopy. We have found that the third method (c), a combination of the first two methods (a) and (b), has given better results.   相似文献   

13.
The local structure of the chemical bond of iron ions implanted into SiO2 glasses (implantation energy, 100 keV; fluence, 1 × 1016 cm?2) is investigated using x-ray emission and absorption spectroscopy. The Fe L x-ray emission and absorption spectra are analyzed by comparing them with the corresponding spectra of reference samples. It is established that iron nanoparticles implanted into the SiO2 vitreous matrix are in an oxidized state. The assumption is made that the most probable mechanism of transformation of iron nanoparticles into an oxidized state during implantation involves the breaking of Si-O-Si bonds with the formation of Si-Si and Fe-O bonds.  相似文献   

14.
Structure and optical properties of ZnSe/SiO2 layered nanocomposites obtained using microwave magnetron sputtering have been studied. The nanocomposites are X-ray amorphous at relatively small thicknesses of the zinc selenide layers. When the thickness of the zinc selenide layers exceeds 20 Å, ZnSe/SiO2 films contain SiO2 amorphous phase and zinc selenide cubic nanocrystallites. It has been demonstrated that the thickness of zinc selenide layers affects the microstresses, refractive index, and band gap.  相似文献   

15.
Absorption and luminescence properties of silver nanoclusters embedded in SiO2 matrixes were studied experimentally. Thin SiO2 films with different amount of silver were produced by co-deposition of Ag and SiO2 onto the silica substrates in vacuum. The thus obtained films possess three peaks in absorption spectra at 297, 329 and 401 nm and two peaks in luminescence spectra at about 500 and 650 nm. We ascribed these spectral features to silver nanoclusters of different sizes that present in the film. Thermal annealing transforms both absorption and emission spectra of the films. Lager clusters that are formed after annealing possess one absorption band at 350–450 nm and one luminescence band at 510 nm. The luminescence was observed only in samples with the silver content of less than 2.2%. Quenching of the luminescence in samples with higher concentration of silver is due to the presence of larger particles with plasmonic properties.  相似文献   

16.
The evolution of the phase composition and physicomechanical properties of ZrO2 + 4 mol % Y2O3 ceramics subjected to hot isostatic pressing and subsequent calcining in air is investigated. It is found that hot isostatic pressing results in the formation of an easily transformed phase Tet with a degree of tetragonality c/a=1.035, which determines high fracture toughness. After calcining in air, the phase Tet decomposes to form a nontransformed phase T′ with a degree of tetragonality c/a=1.005, which determines low fracture toughness.  相似文献   

17.
Photoluminescence of amorphous SiO2 nanoparticles compressed in the form of tablets is studied under exposure to UV radiation. The observed luminescence spectrum is a broad band extending from the excitation wavelength to 700 nm and with a maximum at ~470 nm. The spectrum can be decomposed into two Gaussian components with maxima at ~460 and ~530 nm. As the pressure applied for sample preparation increases, the integrated intensities of these bands change in opposite directions—the intensity of the short-wavelength band increases, while that of the long-wavelength band decreases. It is concluded that these bands are due to different luminescence centers of silicon dioxide located on the surface and in the bulk of SiO2 nanoparticles.  相似文献   

18.
19.
The optical and magnetooptical properties of the new granular nanocomposites (CoFeB)/(SiO2) and (CoFeZr)/(Al2O3), which are grains of amorphous ferromagnetic alloys embedded in dielectric matrices, have been studied. The dependence of the optical, magnetooptical, and magnetic properties of the nanocomposites on their qualitative and quantitative composition, as well as on the conditions of their preparation, was investigated. Spectra of the dielectric functions ε = ε1 ? iε2 were obtained by the ellipsometric method in the range 0.6–5.4 eV. Above 4.2 eV, the absorption coefficient of the (CoFeB)/(SiO2) composites was found to be close to zero for all magnetic-grain concentrations. The polar Kerr effect measured at a photon energy of 1.96 eV in dc magnetic fields of up to 15 kOe reaches values as high as 0.25°–0.3° for these nanocomposites and depends only weakly on the conditions of preparation. On the other hand, the (CoFeZr)/(Al2O3) nanostructures reveal a considerable difference in the concentration dependences of the Kerr effect between samples prepared in a dc magnetic field and in zero field.  相似文献   

20.
Structural properties of amorphous TiO2 spherical nanoparticles have been studied in models with different sizes of 2 nm, 3 nm, 4 nm and 5 nm under non-periodic boundary conditions. We use the pairwise interatomic potentials proposed by Matsui and Akaogi. Models have been obtained by cooling from the melt via molecular dynamics (MD) simulation. Structural properties of an amorphous nanoparticle obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Moreover, we show the radial density profile in a nanoparticle. Calculations show that size effects on structure of a model are significant and that if the size is larger than 3 nm, amorphous TiO2 nanoparticles have a distorted octahedral network structure with the mean coordination number ZTi-O ≈6.0 and ZO-Ti ≈3.0 like those observed in the bulk. Surface structure and surface energy of nanoparticles have been obtained and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号