首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manabe T  Jin Y  Tani O 《Electrophoresis》2007,28(5):843-863
Human plasma proteins were separated by 2-DE under nondenaturing conditions followed by the assignment of the CBB-stained spots using MALDI-MS and PMF, aiming to correlate the information of intact proteins with that of constituent polypeptides. A microgel system was employed to facilitate the analysis. Totally 157 spots on a nondenaturing micro-2-DE gel were numbered, the spots were excised, the proteins in the gel pieces were subjected to in-gel digestion with trypsin followed by polypeptide analysis using MALDI-MS and PMF. Two PMF algorithms, MASCOT (with Swiss-Prot database) and ProFound (with NCBInr database) were employed. A total of 153 spots out of the 157 provided significant match (p <0.05) with polypeptides in databases. Eighty spots were assigned to contain multiple (2-4) polypeptides, suggesting (i) noncovalent interaction between proteins/polypeptides, (ii) disulfide bonding of polypeptides, or (iii) overlapping of the protein locations on the gel. The results of polypeptide assignment coincided very well with the results of protein mapping previously reported, in which 33 plasma proteins were identified using blotting-immunochemical staining (Manabe, T., Takahashi, Y., Higuchi, N., Okuyama, T., Electrophoresis 1985, 6, 462-467). Further, 19 polypeptides in 25 spots were newly assigned. These results demonstrate that the techniques of MALDI-MS and PMF can be applied for analysis of proteins separated on nondenaturing 2-DE gels, providing information on their polypeptide structure. The integrated information on proteins and polypeptides would help the comprehensive understanding on the functions of complex protein systems.  相似文献   

2.
Manabe T  Jin Y 《Electrophoresis》2008,29(12):2672-2688
Previously, we reported the analysis of human plasma proteins by 2-DE under nondenaturing conditions (Type-I 2-DE) followed by the assignment of stained spots using MALDI-MS and PMF [1]. Here, we employ 2-DE conditions modified only in the second-dimensional separation; SDS was added in the gradient slab gel aiming to dissociate noncovalently bound proteins/polypeptides (Type-II 2-DE). Totally 169 CBB-stained spots on a micro-2-DE gel were numbered and subjected to polypeptide assignment using MALDI-MS-PMF. One hundred sixty spots out of the 169 provided significant match (p <0.05) with polypeptides in databases. Comparisons of the results of polypeptide assignment on the two 2-DE patterns indicated that 10 polypeptides in 20 stained spots on the Type-I 2-DE pattern [1] shifted toward low-molecular-weight positions on the Type-II 2-DE pattern, demonstrating the presence of noncovalent interactions. Seventeen polypeptides in 38 stained spots were only assigned on the Type-II 2-DE gel, which could mostly be accounted for by the disruption of noncovalent protein-protein interactions in the presence of SDS, i.e., protein/polypeptide complexes which might form smear bands on the Type-I 2-DE gel dissociate to form clear spots on the Type-II 2-DE gel. The method employed here, comparisons of nondenaturing and denaturing 2-DE maps with polypeptide assignment by MALDI-MS-PMF, would enable the simultaneous detection of multiple noncovalent interactions in complex protein/polypeptide systems.  相似文献   

3.
Jin Y  Manabe T 《Electrophoresis》2007,28(3):449-459
Previously, we have reported a high-efficiency method of protein extraction from CBB-stained polyacrylamide gels for molecular mass measurement with MALDI-TOF MS [1]. In the present work, the alkaline extraction method was applied to CBB-stained 2-DE gels on which human plasma proteins were separated in the absence of denaturant. In order to examine the performance of the method, ten spots with apparent molecular masses (MMapp) in the range of 65 to 1000 kDa were selected and the proteins were extracted from the gel pieces. The extracts were subjected to whole-mass measurement by MALDI-TOF MS, with and without DTT treatment. In addition, the extracts were subjected to in-solution trypsin digestion followed by MALDI-TOF MS and PMF analysis. Successful extraction of proteins from the ten spots, up to MMapp 1000 kDa, has been ascertained by the significant PMF assignment (MASCOT) with high sequence coverage of the respective proteins or polypeptides. When direct mass measurement of the extracted proteins was attempted, three spots in MMapp range 65-100 kDa provided mass peaks. Five spots in MMapp range 150-400 kDa did not give mass peaks of the intact proteins, but showed those of the constituent polypeptides after the DTT treatment. Extraction of proteins prior to trypsin digestion enabled the procedure of PMF analysis to be much simpler than the conventional in-gel digestion method, providing comparable protein scores and sequence coverage. The technique presented here suggests a new strategy for the characterization of proteins separated by nondenaturing 2-DE.  相似文献   

4.
Takashi Manabe  Ya Jin 《Electrophoresis》2010,31(16):2740-2748
Escherichia coli (strain K‐12)‐soluble proteins were analyzed by nondenaturing micro 2‐DE and MALDI‐MS‐PMF. The reported conditions of nondenaturing IEF in agarose column gels [Jin, Y., Manabe, T., Electrophoresis 2009, 30, 939–948] were modified to optimize the resolution of cellular soluble proteins. About 300 CBB‐stained spots, the apparent molecular masses of which ranged from ca. 6000 to 10 kDa, were detected. All the spots on two reference 2‐DE gels (one for wide mass range and one for low‐molecular‐mass range) were numbered and subjected to MALDI‐MS‐PMF for the assignment of constituting polypeptides. Most of the spots (310 spots out of 329) provided significant match (p<0.05) with polypeptides in Swiss‐Prot database and totally 228 polypeptide species were assigned. Activity staining of enzymes such as alkaline phosphatase and catalases was performed on the 2‐DE gels and the locations of the activity spots matched well with those of the MS‐assigned polypeptides of the enzymes. Most of the polypeptides with subunit information in Swiss‐Prot (119 polypeptides as homo‐multimers and 25 as hetero‐multimers out of the 228), such as pyruvate dehydrogenase complex which is composed of three enzymatic components, were detected at the apparent mass positions of their polymers, suggesting that the proteins were separated retaining their subunit structures. When a nondenaturing 2‐DE gel was vertically cut into 2 mm strips and one of the strips was subjected to a third‐dimension micro SDS‐PAGE (micro 3‐DE), about 190 CBB‐stained spots were detected. The assignment of the polypeptides separated on the 3‐DE gel would further provide information on protein/polypeptide interactions.  相似文献   

5.
Manabe T  Jin Y 《Electrophoresis》2011,32(2):300-309
In a previous paper, we reported on the analysis of Escherichia coli (strain K‐12) soluble proteins by nondenaturing micro 2‐DE/3‐DE and MALDI‐MS‐PMF [Manabe, T., Jin, Y., Electrophoresis 2010, 31, 2740–2748]. To evaluate the performance of the 2‐DE/3‐DE technique, a nondenaturing 2‐DE gel just after the second‐dimension run was cut into 12 vertical strips, each 2 mm‐wide strip was set on a micro slab gel, and third‐dimension SDS‐PAGE was run in parallel. Each of the twelve 3‐DE gels showed about 150–200 CBB‐stained spots. Two of the 3‐DE gels were selected for the assignment of polypeptides using MALDI‐MS‐PMF and totally 161 polypeptides were assigned on the two 3‐DE gels, in which 81 have been assigned on the nondenaturing micro 2‐DE gel and 80 were newly assigned. Most of the newly assigned polypeptides resided in faintly stained spots on the 3‐DE gels, which indicates that the polypeptides were purified in the process of the third‐dimension separation. The comparisons of the apparent mass values estimated from the second‐dimension (nondenaturing pore‐gradient PAGE) mobility with those estimated from the third‐dimension (SDS‐PAGE) mobility suggested the oligomer structures of the assigned polypeptides and they matched well with those described in a database (UniProtKnowledgebase). The technique of nondenaturing micro 2‐DE/3‐DE, combined with MALDI‐MS‐PMF, could become an efficient method to obtain information on the quaternary structures of hundreds of cellular soluble proteins simultaneously because of its high efficiency in protein/polypeptide separation and assignment.  相似文献   

6.
2-DE combined with LC-MS/MS has become a routine, reliable protein separation and identification technology for proteome analysis. The demand for large-scale protein identifications after 2-DE separation requires a sensitive and high-throughput LC-MS/MS method. In this report, a simple, splitless, fully automated capillary LC-MS/MS system was described for the large-scale identification of proteins from gels stained with either silver or CBB. The gel samples were digested and peptides were extracted using an in-gel digestion workstation. The peptides were automatically introduced into a capillary column by an autosampler connected to an HPLC pump. A nanoLC pump was then used to deliver the gradient and elute the peptides from the capillary column directly into an LCQ IT mass spectrometer. Neither a peptide trapping setting nor a flow split is needed in this simple setup. The collected MS/MS spectra were then automatically searched by SEQUEST, and filtered and organized by DTASelect. Hundreds of silver-stained or CBB-stained Shewanella oneidensis, Geobacter sulfurreducens, and Geobacter metallireducens proteins separated by denaturing or nondenaturing 2-DE were digested and routinely analyzed using this fully automated muLC-MS/MS system. High peptide hits and sequence coverage were achieved for most CBB-stained gel spots. About 75% of the spots were found to contain multiple proteins. Although silver staining is not commonly thought to be optimal for MS analysis, protein identifications were successfully obtained from silver-stained 2-DE spots detected using methods with and without formaldehyde for protein fixation.  相似文献   

7.
Mass spectrometry (MS) together with genome database searches serves as a powerful tool for the identification of proteins. In proteome analysis, mixtures of cellular proteins are usually separated by sodium dodecyl sulfate (SDS) polyacrylamide gel-based two-dimensional gel electrophoresis (2-DE) or one-dimensional gel electrophoresis (1-DE), and in-gel digested by a specific protease. In-gel protein digestion is one of the critical steps for sensitive protein identification by these procedures. Efficient protein digestion is required for obtaining peptide peaks necessary for protein identification by MS. This paper reports a remarkable improvement of protein digestion in SDS polyacrylamide gels using an acid-labile surfactant, sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate (ALS). Pretreatment of gel pieces containing protein spots separated by 2-DE with a small amount of ALS prior to trypsin digestion led to increases in the digested peptides eluted from the gels. Consistently, treatment of gel pieces containing silver-stained standard proteins and those separated from tissue extracts resulted in the detection of increased numbers of peptide peaks in spectra obtained by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOFMS). Hence the present protocol with ALS provides a useful strategy for sensitive protein identification by MS.  相似文献   

8.
Cerebrospinal fluid (CSF) is in close proximity to the brain and changes in the protein composition of CSF may be indicative of altered brain protein expression in neurodegenerative disorders. Analysis of brain-specific proteins in CSF is complicated by the fact that most CSF proteins are derived from the plasma and tend to obscure less abundant proteins. By adopting a prefractionation step prior to two-dimensional gel electrophoresis (2-DE), less abundant proteins are enriched and can be detected in complex proteomes such as CSF. We have developed a method in which liquid-phase isoelectric focusing (IEF) is used to prefractionate individual CSF samples; selected IEF fractions are then analysed on SYPRO-Ruby-stained 2-D gels, with final protein identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). To optimise the focusing of the protein spots on the 2-D gel, the ampholyte concentration in liquid-phase IEF was minimised and the focusing time in the first dimension was increased. When comparing 2-D gels from individual prefractionated and unfractionated CSF samples it is evident that individual protein spots are larger and contain more protein after prefractionation of CSF. Generally, more protein spots were also detected in the 2-D gels from prefractionated CSF compared with direct 2-DE separations of CSF. Several proteins, including cystatin C, IgM-kappa, hemopexin, acetyl-coenzyme A carboxylase-alpha, and alpha-1-acid glycoprotein, were identified in prefractionated CSF but not in unfractionated CSF. Low abundant forms of posttranslationally modified proteins, e.g. alpha-1-acid glycoprotein and alpha-2-HS glycoprotein, can be enriched, thus better resolved and detected on the 2-D gel. Liquid-phase IEF, as a prefractionation step prior to 2-DE, reduce sample complexity, facilitate detection of less abundant protein components, increases the protein loads and the protein amount in each gel spot for MALDI-MS analysis.  相似文献   

9.
We have examined two-dimensional electrophoresis (2-DE) gel maps of polypeptides from the Gram-negative bacterium Methylococcus capsulatus (Bath) and found the same widespread trains of spots as often reported in 2-DE gels of polypeptides of other Gram-negative bacteria. Some of the trains of polypeptides, both from the outer membrane and soluble protein fraction, were shown to be generated during the separation procedure of 2-DE, and not by covalent post-translational modifications. The trains were found to be regenerated when rerunning individual polypeptide spots. The polypeptides analysed giving this type of trains were all found to be classified as stable polypeptides according to the instability index of Guruprasad et al. (Protein Eng. 1990, 4, 155-161). The phenomenon most likely reflects conformational equilibria of polypeptides arising from the experimental conditions used, and is a clear drawback of the standard 2-DE procedure, making the gel picture unnecessarily complex to analyse.  相似文献   

10.
Ha GH  Lee SU  Kang DG  Ha NY  Kim SH  Kim J  Bae JM  Kim JW  Lee CW 《Electrophoresis》2002,23(15):2513-2524
Two-dimensional gel electrophoresis (2-DE) maps for human stomach tissue proteins have been prepared by displaying the protein components of the tissue by 2-DE and identifying them using mass spectrometry. This will enable us to present an overview of the proteins expressed in human stomach tissues and lays the basis for subsequent comparative proteome analysis studies with gastric diseases such as gastric cancer. In this study, 2-DE maps of soluble fraction proteins were prepared on two gel images with partially overlapping pH ranges of 4-7 and 6-9. On the gels covering pH 4-7 and pH 6-9, about 900 and 600 protein spots were detected by silver staining, respectively. For protein identification, proteins spots on micropreparative gels stained with colloidal Coomassie Brilliant Blue G-250 were excised, digested in-gel with trypsin, and analyzed by peptide mass fingerprinting with delayed extraction-matrix assisted laser desorption/ionization-mass spectrometry (DE-MALDI-MS). In all, 243 protein spots (168 spots in acidic map and 75 spots in basic map) corresponding to 136 different proteins were identified. Besides these principal maps, overview maps (displayed on pH 3-10 gels) for total homogenate and soluble fraction, are also presented with some identifications mapped on them. Based on the 2-DE maps presented in this study, a 2-DE database for human stomach tissue proteome has been constructed and is available at http://proteome.gsnu.ac.kr/DB/2DPAGE/Stomach/. The 2-DE maps and the database resulting from this study will serve important resources for subsequent proteomic studies for analyzing the normal protein variability in healthy tissues and specific protein variations in diseased tissues.  相似文献   

11.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

12.
The availability of easy-to-handle, sensitive, and cost-effective protein staining protocols for 2-DE, in conjunction with a high compatibility for subsequent MS analysis, is still a prerequisite for successful proteome research. In this article we describe a quick and easy-to-use methodological protocol based on sensitive, homogeneous, and MS-compatible silver nitrate protein staining, in combination with an in-gel digestion, employing the Millipore 96-well ZipPlate system for peptide preparation. The improved quality and MS compatibility of the generated protein digests, as compared to the otherwise weakly MS-compatible silver nitrate staining, were evaluated on real tissue samples by analyzing 192 Coomassie-stained protein spots against their counterparts from a silver-stained 2-DE gel. Furthermore, the applicability of the experimental setup was evaluated and demonstrated by the analysis of a large-scale MALDI-TOF MS experiment, in which we analyzed an additional ~1000 protein spots from 2-DE gels from mouse liver and mouse brain tissue.  相似文献   

13.
Zhou S  Mann CJ  Dunn MJ  Preedy VR  Emery PW 《Electrophoresis》2006,27(5-6):1147-1153
We report a method to quantify the specific radioactivity of proteins that have been separated by 2-DE. Gels are stained with SyproRuby, and protein spots are excised. The SyproRuby dye is extracted from each spot using DMSO, and the fluorescence is quantified automatically using a plate reader. The extracted gel piece is then dissolved in hydrogen peroxide and radioactivity is quantified by liquid scintillation counting. Gentle agitation with DMSO for 24 h was found to extract all the SyproRuby dye from gel fragments. The fluorescence of the extract was linearly related to the amount of BSA loaded onto a series of 1-D gels. When rat muscle samples were run on 2-DE gels, the fluorescence extracted from 54 protein spots showed a good correlation (r = 0.79, p < 0.001) with the corresponding spot intensity measured by conventional scanning and image analysis. DMSO extraction was found not to affect the amount of radioactive protein left in the gel. When a series of BSA solutions of known specific radioactivity were run on 2-DE gels, the specific radioactivity measured by the new method showed a good correlation (r = 0.98, p < 0.01, n = 5) with the specific radioactivity measured directly before loading. Reproducibility of the method was measured in a series of 2-DE gels containing proteins from the livers of rats and mice that had been injected with [35S]methionine. Variability tended to increase when the amount of radioactivity in the protein spot was low, but for samples containing at least 10 dpm above background the CV was around 30%, which is comparable to that obtained when measuring protein expression by conventional image analysis of SyproRuby-stained 2-DE gels. Similar results were obtained whether spots were excised manually or using a spot excision robot. This method offers a high-throughput, cost-effective and reliable method of quantifying the specific radioactivity of proteins from metabolic labelling experiments carried out in vivo, so long as sufficient quantities of radioactive tracer are used.  相似文献   

14.
A method for the analysis of the rViscumin heterodimer (recombinant mistletoe lectin) based on two-dimensional (2-D) polyacrylamide gel electrophoresis and mass spectrometry was developed and used for quality control concerning purity and homogeneity of the recombinant protein processed under Good Manufacturing Practice (GMP) conditions. A series of spots with different pI-values in the pH-gradient of both rViscumin A- and B-chain were observed independently from the experimental conditions like urea concentration, heat treatment or the use of cysteine alkylating agents. Comparative studies of the major spots using matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS), liquid chromatography-electrospray ionization (LC-ESI)-MS and LC-ESI-tandem MS (MS/MS) after tryptic in-gel digestion resulted in a sequence coverage of 92% for the A-chain and 95% for the B-chain. No molecular differences like common chemical or post-translational modifications or nonenzymatic deamidation were found to cause the different charge values of the separated spots. Therefore, these protein spots were extracted from the 2-D gel and separated again by 2-D gel electrophoresis (termed Re-2-DE). Each of the single spots tested in the Re-2-DE experiment split up in the same heterogeneous pattern concerning the pI-values. We suggest that the observed charge variants of rViscumin are the result of conformational protein variants, existing in an equilibrium during sample preparation and/or isoelectric focusing and are not caused from microheterogeneity in the primary structure of rViscumin.  相似文献   

15.
Peptide mass fingerprinting (PMF) is a powerful tool for identification of proteins separated by two-dimensional electrophoresis (2-DE). With the increase in sensitivity of peptide mass determination it becomes obvious that even spots looking well separated on a 2-DE gel may consist of several proteins. As a result the number of mass peaks in PMFs increased dramatically leaving many unassigned after a first database search. A number of these are caused by experiment-specific contaminants or by neighbor spots, as well as by additional proteins or post-translational modifications. To understand the complete protein composition of a spot we suggest an iterative procedure based on large numbers of PMFs, exemplified by PMFs of 480 Helicobacter pylori protein spots. Three key iterations were applied: (1) Elimination of contaminant mass peaks determined by MS-Screener (a software developed for this purpose) followed by reanalysis; (2) neighbor spot mass peak determination by cluster analysis, elimination from the peak list and repeated search; (3) re-evaluation of contaminant peaks. The quality of the identification was improved and spots previously unidentified were assigned to proteins. Eight additional spots were identified with this procedure, increasing the total number of identified spots to 455.  相似文献   

16.
A 100,000 g supernatant from human heart muscle, containing cytosolic proteins with some contaminating plasma proteins, was analyzed for fatty acid binding protein (FABP) by two-dimensional electrophoresis (2-DE) using isoelectric focusing under nondenaturing conditions in the first dimension. FABP purified from human heart muscle was found to comigrate with a major spot in 2-DE gels of the supernatant. This spot was comparable with those of the myoglobins in staining intensity. When purified FABP was charged with [3H]palmitate and subjected to nondenaturing 2-DE, radioactivity always comigrated with this protein. Under denaturing and reducing conditions in the second dimension, FABP was found to have a pI of 5.3 and an apparent molecular weight of 15,000. Isoforms of FABP, reported here for the first time to occur in human heart muscle, were observed as minor spots focusing at pH 5.1 and 5.7. When electrophoresis in the second dimension was carried out under denaturing but nonreducing conditions, an additional protein appeared at pH 5.3 with an apparent molecular weight of about 30,000. This protein was identified as a dimer of FABP and evidence for the involvement of an intermolecular disulfide bond in this dimerization is presented.  相似文献   

17.
Song J  Braun G  Bevis E  Doncaster K 《Electrophoresis》2006,27(15):3144-3151
Fruit tissues are considered recalcitrant plant tissue for proteomic analysis. Three phenol-free protein extraction procedures for 2-DE were compared and evaluated on apple fruit proteins. Incorporation of hot SDS buffer, extraction with TCA/acetone precipitation was found to be the most effective protocol. The results from SDS-PAGE and 2-DE analysis showed high quality proteins. More than 500 apple polypeptides were separated on a small scale 2-DE gel. The successful protocol was further tested on banana fruit, in which 504 and 386 proteins were detected in peel and flesh tissues, respectively. To demonstrate the quality of the extracted proteins, several protein spots from apple and banana peels were cut from 2-DE gels, analyzed by MS and have been tentatively identified. The protocol described in this study is a simple procedure which could be routinely used in proteomic studies of many types of recalcitrant fruit tissues.  相似文献   

18.
19.
Plasma samples from adult male rats were separated by nondenaturing micro 2DE and a reference gel was selected, on which 136 CBB‐stained spots were numbered and subjected to in‐gel digestion and quantitative LC‐MS/MS. The analysis provided the assignment of 1–25 (average eight) non‐redundant proteins in each spot and totally 199 proteins were assigned in the 136 spots. About 40% of the proteins were detected in more than one spot and 15% in more than ten spots. We speculate this complexity arose from multiple causes, including protein heterogeneity, overlapping of protein locations and formation of protein complexes. Consequently, such results could not be appropriately presented as a conventional 2DE map, i.e. a list or a gel pattern with one or a few proteins annotated to each spot. Therefore, the LC‐MS/MS quantity data was used to reconstruct the gel distribution of each protein and a library containing 199 native protein maps was established for rat plasma. Since proteins that formed a complex would migrate together during the nondenaturing 2DE and thus show similar gel distributions, correlation analysis was attempted for similarity comparison between the maps. The protein pairs showing high correlation coefficients included some well‐known complexes, suggesting the promising application of native protein mapping for interaction analysis. With the importance of rat as the most commonly used laboratory animal in biomedical research, we expect this work would facilitate relevant studies by providing not only a reference library of rat plasma protein maps but a means for functional and interaction analysis.  相似文献   

20.
The characteristics of protein detection and quantitation with SYPRO Ruby protein gel stain in one- and two-dimensional polyacrylamide gels were evaluated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of three different purified recombinant proteins showed that the limits of detection were comparable to the limits of detection with ammoniacal silver staining and were protein-specific, ranging from 0.5 to 5 ng. The linearity of the relationship between protein level and SYPRO Ruby staining intensity also depended on the individual protein, with observed linear dynamic ranges of 200-, 500-, and, 1000-fold for proteins analyzed by SDS-PAGE. SYPRO Ruby protein gel stain was also evaluated in two-dimensional electrophoretic (2-DE) analysis of Escherichia coli proteins. The experiment involved analysis of replicates of the same sample as well as dilution of the sample from 0.5 to 50 nug total protein across gels. In addition to validating the 2-DE system itself, the experiment was used to evaluate three different image analysis programs: Z3 (Compugen), Progenesis (Nonlinear Dynamics), and PDQuest (Bio-Rad). In each program, we analyzed the 2-DE images with respect to sensitivity and reproducibility of overall protein spot detection, as well as linearity of response for 20 representative proteins of different molecular weights and pI. Across all three programs, coefficients of variation (CV) in total number of spots detected among replicate gels ranged from 4 to 11%. For the 20 representative proteins, spot quantitation was also comparable with CVs for gel-to-gel reproducibility ranging from 3 to 33%. Using Progenesis and PDQuest, a 1000-fold linear dynamic range of SYPRO Ruby was demonstrated with a single known protein. These two programs were more suitable than Z3 for examining individual protein spot quantity across a series of gels and gave comparable results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号