首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the synthesis and optical spectral properties of several new azasteroid derivatives. The formation of these compounds was explained based on the most probable mechanism. The luminescent heterocycles were synthesized by 1,3-dipolar cycloaddition reactions between benzo[f]quinoline and methylpropiolate or dimethyl acetylenedicarboxylate (DMAD). A selective and efficient way for [3+2]-dipolar cycloaddition of benzo[f]quinolinium ylides under ultrasound (US) irradiation (20 kHz processing frequency) is presented. We report substantially higher yields under US irradiation, whereas the solvent amounts required are at least three-fold less compared to classical heating. The azasteroid derivatives are blue emitters with λmax of fluorescence around 430–450 nm. A certain influence of the azasteroid substituents concerning absorption and fluorescent properties was observed. Compounds anchored with a bulky pivaloyl group or without a C=O carbonyl group have shown increased fluorescence intensity.  相似文献   

2.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   

3.
Nitroaromatics seldom fluoresce. The importance of electron-deficient (n-type) conjugates, however, has inspired a number of strategies for suppressing the emission-quenching effects of the strongly electron-withdrawing nitro group. Here, we demonstrate how such strategies yield fluorescent nitroaryl derivatives of dipyrrolonaphthyridinedione (DPND). Nitro groups near the DPND core quench its fluorescence. Conversely, nitro groups placed farther from the core allow some of the highest fluorescence quantum yields ever recorded for nitroaromatics. This strategy of preventing the known processes that compete with photoemission, however, leads to the emergence of unprecedented alternative mechanisms for fluorescence quenching, involving transitions to dark nπ* singlet states and aborted photochemistry. Forming nπ* triplet states from ππ* singlets is a classical pathway for fluorescence quenching. In nitro-DPNDs, however, these ππ* and nπ* excited states are both singlets, and they are common for nitroaryl conjugates. Understanding the excited-state dynamics of such nitroaromatics is crucial for designing strongly fluorescent electron-deficient conjugates.

Dipyrrolonaphthyridinedione appended with para- or meta-nitrophenyl substituents exhibits strong fluorescence from a 1ππ* S1 state.  相似文献   

4.
Engineering the preorganization of photoactive units remains a big challenge in solid-state photochemistry research. It is of not only theoretical importance in the construction of topochemical reactions but also technological significance in the fabrication of advanced materials. Here, a cyanostilbene derivative, (Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(naphthalen-2-yl) acrylonitrile (BNA), was crystallized into two polymorphs under different conditions. The two crystals, BNA-α and BNA-β, have totally different intra-π-dimer and inter-π-dimer hierarchical architectures on the basis of a very simple monomer, which provides them with distinct reactivities, functions and photoresponsive properties. Firstly, two different types of solid-state [2 + 2] photocycloaddition reaction: (i) a typical olefin–olefin cycloaddition reaction within the symmetric π-dimers of BNA-α and (ii) an unusual olefin-aromatic ring cycloaddition reaction within the offset π-dimers of BNA-β have been observed, respectively. Secondly, the crystal of BNA-α can be bent to 90° without any fracture, exhibiting outstanding flexibility upon UV irradiation, while the reversible photocycloaddition/thermal cleavage process (below 100 °C) accompanied by unique fluorescence changes can be achieved in the crystal of BNA-β. Finally, micro-scale photoactuators and light-writable anti-counterfeiting materials have been successfully fabricated. This work paves a simple way to construct smart materials through a bottom-up way that is realized by manipulating hierarchical architectures in the solid state.

Two crystals with different hierarchical architectures are observed based on a single molecule, achieving different types of [2 + 2] photocycloaddition. Finally, controllable photoactuators and light-writable materials are successfully fabricated.  相似文献   

5.
A novel 1-hydroxy-2,4-diformylnaphthalene-based fluorescent probe L was synthesized by a Knoevenagel reaction and exhibited excellent sensitivity and selectivity towards sulfite ions (SO32−) and bisulfite ions (HSO3). The detection limits of the probe L were 0.24 μM using UV-Vis spectroscopy and 9.93 nM using fluorescence spectroscopy, respectively. Furthermore, the fluorescent probe L could be utilized for detection in real water samples with satisfactory recoveries in the range 99.20%~104.30% in lake water and 100.00%~104.80% in tap water by UV-Vis absorption spectrometry, and in the range 100.50%~108.60% in lake water and 102.70%~103.80% in tap water by fluorescence spectrophotometry.  相似文献   

6.
In the past, chemically reactive polymeric interfaces have been considered to be of potential interest for developing functional materials for a wide range of practical applications. Furthermore, the rational incorporation of luminescence properties into such chemically reactive interfaces could provide a basis for extending the horizon of their prospective utility. In this report, a simple catalyst-free chemical approach is introduced to develop a chemically reactive and optically active polymeric gel. Branched-polyethyleneimine (BPEI)-derived, inherently luminescent carbon dots (BPEI-CDs) were covalently crosslinked with pentaacrylate (5Acl) through a 1,4-conjugate addition reaction under ambient conditions. The synthesized polymeric gel was milky white under visible light; however, it displayed fluorescence under UV light. Additionally, the residual acrylate groups in the synthesized fluorescent gel allowed its chemical functionality to be tailored through facile, robust 1,4-conjugate addition reactions with primary-amine-containing small molecules under ambient conditions. The chemical reactivity of the luminescent gel was further employed for a proof-of-concept demonstration of portable and parallel ‘ON’/‘OFF’ toxic chemical sensing (namely, the sensing of nitrite ions as a model analyte). First, the chemically reactive luminescent gel derived from BPEI-CDs was covalently post-modified with aniline for the selective synthesis of a diazo compound in the presence of nitrite ions. During this process, the color of the gel under visible light changed from white to yellow and, thus, the colorimetric mode of the sensor was turned ‘ON’. In parallel, the luminescence of the gel under UV light was quenched, which was denoted as the ‘OFF’ mode of the sensor. This parallel and unambiguous ‘ON’/‘OFF’ sensing of a toxic chemical (nitrite ions, with a detection limit of 3 μM) was also achieved even in presence of other relevant interfering ions and at concentrations well below the permissible limit (65 μM) set by the World Health Organization (WHO). Furthermore, this chemically reactive luminescent gel could be of potential interest in a wide range of basic and applied contexts.

An unprecedented chemically reactive and polymeric luminescent gel is developed, and this material is further employed to develop a portable and rapid sensor for a practically relevant analyte (nitrite ions) with a sensitivity of 3 μM.  相似文献   

7.
Poly-2-(2-azido-5-nitrobenzoyloxy)ethylmethacrylate (P-II-A) and poly-2-(4-azido-3-nitrobenzoyloxy)ethylmethacrylate (P-II-B) were synthesized from the reactions of 2-hydroxyethylmethacrylate with 2-chloro-5-nitrobenzoic acid and 4-chloro-3-nitrobenzoic acid, respectively, by substitution reactions of sodium azide with the corresponding chloronitrobenzoyl group. In addition, the degradation reaction of the 2-azido-5-nitrobenzoyl group in P-II-A and the transformation of the 4-azido-3-nitrobenzoyl group to 5-carboxylbenzofurazane-1-oxide ring in P-II-B by irradiation with ultraviolet (UV) light or by heating were investigated in detail. In the photochemical reaction the reaction of the azide group in P-II-A was affected by the presence of a spacer in the polymer chain. Moreover, in the thermochemical reaction the rates of the reactions of azide groups in P-II-A and P-II-B were controlled by the facility of molecular motion and the conformation of polymer chains.  相似文献   

8.
An unprecedented intramolecular [4 + 2] tetrazine-olefin cycloaddition with α,β-unsaturated substrates was discovered. The reaction produces unique coumarin-dihydropyridazine heterocycles that exhibited strong fluorescence with large Stokes shifts and excellent photo- and pH-stability. This property can be used for reaction analysis. The rate of cycloaddition was found to be solvent dependent and was determined using experimental data with a kinetic modeling software (COPASI) as well as DFT calculations (k1 = 0.64 ± 0.019 s−1 and 4.1 s−1, respectively). The effects of steric and electronic properties of both the tetrazine and α,β-unsaturated carbonyl on the reaction were studied and followed the known trends characteristic of the intermolecular reaction. Based on these results, we developed a “release-then-click” strategy for the ROS triggered release of methylselenenic acid (MeSeOH) and a fluorescent tracer. This strategy was demonstrated in HeLa cells via fluorescence imaging.

Tetrazines rapidly react with tethered acrylates/acrylamides to produce fused coumarin derivatives. This template can be used in prodrug designs by depleting toxic α,β-unsaturated byproducts while also producing an imaging agent.  相似文献   

9.
A series of 4-aziridino[C60]fullerene-1,8-naphthalimide (C60-NI) dyads 4 ([6,6]-closed ring) were synthesized as the only addition product from the reaction of C60 with the corresponding azide compounds 3 under microwave irradiation in good yield. A quenching of fluorescence was shown in dyads 4, and this decay was evidenced to be an intramolecular process.  相似文献   

10.
Theranostic agents for concurrent cancer therapy and diagnosis have begun attracting attention as a promising modality. However, accurate imaging and identification remains a great challenge for theranostic agents. Here, we designed and synthesized a novel theranostic agent H6M based on the “double-locked” strategy by introducing an electron-withdrawing nitro group into 1-position of a pH-responsive 3-amino-β-carboline and further covalently linking the hydroxamic acid group, a zinc-binding group (ZBG), to the 3-position of β-carboline to obtain histone deacetylase (HDAC) inhibitory effect for combined HDAC-targeted therapy. We found that H6M can be specifically reduced under overexpressed nitroreductase (NTR) to produce H6AQ, which emits bright fluorescence at low pH. Notably, H6M demonstrated a selective fluorescence imaging via successive reactions with NTR (first “key”) and pH (second “key”), and precisely identified tumor margins with a high S/N ratio to guide tumor resection. Finally, H6M exerted robust HDAC1/cancer cell inhibitory activities compared with a known HDAC inhibitor SAHA. Therefore, the NTR/pH-activated theranostic agent provided a novel tool for precise diagnosis and efficient tumor therapy.  相似文献   

11.
A hypoxia-responsive probe based on a flavylium dye containing an azo group (AZO-Flav) was synthesized to detect hypoxic conditions via a reductase-catalyzed reaction in cancer cells. In in vitro enzymatic investigation, the azo group of AZO-Flav was reduced by a reductase in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) followed by fragmentation to generate a fluorescent molecule, Flav-NH2. The response of AZO-Flav to the reductase was as fast as 2 min with a limit of detection (LOD) of 0.4 μM. Moreover, AZO-Flav displayed high enzyme specificity even in the presence of high concentrations of biological interferences, such as reducing agents and biothiols. Therefore, AZO-Flav was tested to detect hypoxic and normoxic environments in cancer cells (HepG2). Compared to the normal condition, the fluorescence intensity in hypoxic conditions increased about 10-fold after 15 min. Prolonged incubation showed a 26-fold higher fluorescent intensity after 60 min. In addition, the fluorescence signal under hypoxia can be suppressed by an electron transport process inhibitor, diphenyliodonium chloride (DPIC), suggesting that reductases take part in the azo group reduction of AZO-Flav in a hypoxic environment. Therefore, this probe showed great potential application toward in vivo hypoxia detection.  相似文献   

12.
Sensitive and rapid monitoring of cholesterol levels in the human body are highly desirable as they are directly related to the diagnosis of cardiovascular diseases. By using the nanoarchitectonic approach, a novel fluorescent conjugated oligofluorene (OFP-CD) functionalized with β-cyclodextrin (β-CD) was assembled for “Turn-On” fluorescence sensing of cholesterol. The appended β-CD units in OFP-CD enabled the forming of host-guest complexes with dabsyl chloride moieties in water, resulting in fluorescence quenching of the oligofluorene through intermolecular energy transfer. In the presence of cholesterol molecules, a more favorable host-guest complex with stoichiometry 1 cholesterol: 2 β-CD units was formed, replacing dabsyl chloride in β-CD’s cavities. This process resulted in fluorescence recovery of OFP-CD, owing to disruption of energy transfer. The potential of this nanoarchitectonic system for “Turn-On” sensing of cholesterol was extensively studied by fluorescence spectroscopy. The high selectivity of the sensor for cholesterol was demonstrated using biologically relevant interfering compounds, such as carbohydrates, amino acids, metal ions, and anions. The detection limit (LOD value) was as low as 68 nM, affirming the high sensitivity of the current system.  相似文献   

13.
Bioorthogonal turn‐on probes have been widely utilized in visualizing various biological processes. Most of the currently available bioorthogonal turn‐on probes are blue or green emissive fluorophores with azide or tetrazine as functional groups. Herein, we present an alternative strategy of designing bioorthogonal turn‐on probes based on red‐emissive fluorogens with aggregation‐induced emission characteristics (AIEgens). The probe is water soluble and non‐fluorescent due to the dissipation of energy through free molecular motion of the AIEgen, but the fluorescence is immediately turned on upon click reaction with azide‐functionalized glycans on cancer cell surface. The fluorescence turn‐on is ascribed to the restriction of molecular motion of AIEgen, which populates the radiative decay channel. Moreover, the AIEgen can generate reactive oxygen species (ROS) upon visible light (λ=400–700 nm) irradiation, demonstrating its dual role as an imaging and phototherapeutic agent.  相似文献   

14.
The catalytic asymmetric α-benzylation of aldehydes represents a highly valuable reaction for organic synthesis. For example, the generated α-heteroarylmethyl aldehydes, such as (R)-2-methyl-3-(pyridin-4-yl)propanal ((R)-MPP), are an important class of synthons to access bioactive drugs and natural products. We report herein a new and facile synthetic approach for the asymmetric intermolecular α-benzylation of aldehydes with less sterically hindered alkyl halides using a multifunctional chiral covalent framework (CCOF) catalyst in a heterogeneous way. The integration of chiral BINOL-phosphoric acid and Cu(ii)-porphyrin modules into a single COF framework endows the obtained (R)-CuTAPBP-COF with concomitant Brønsted and Lewis acidic sites, robust chiral confinement space, and visible-light induced photothermal conversion. These features allow it to highly promote the intermolecular asymmetric α-benzylation of aldehydes via visible-light induced photothermal conversion. Notably, this light-induced thermally driven reaction can effectively proceed under natural sunlight irradiation. In addition, this reaction can be easily extended to a gram-scale level, and its generality is ascertained by asymmetric α-benzylation reactions on various substituted aldehydes and alkyl bromides.

We report a new synthetic approach for the intermolecular α-alkylation of aldehydes with alkyl halides based on a BINOL-phosphate and Cu(ii)-porphyrin derived multifunctional CCOF catalyst via visible-light induced photothermal conversion.  相似文献   

15.
Unsubstituted pyridin-2-amine has a high quantum yield and is a potential scaffold for a fluorescent probe. However, the facile access to conjugated highly substituted aminopyridines and the study of their fluorescent properties is scarce. In this paper, synthesis and fluorescent properties of multisubstituted aminopyridines were studied based on a recently developed Rh-catalyzed coupling of vinyl azide with isonitrile to form a vinyl carbodiimide intermediate, following tandem cyclization with an alkyne. An aminopyridine substituted with an azide group as a potential probe was further designed, synthesized, and evaluated. The “clicking-and-probing” experiment of it on BSA protein showed the potential of aminopyridine as a scaffold of a biological probe.  相似文献   

16.
Octadehydrodibenzo[12]annulenes (DBAs), readily available by the oxidative acetylenic coupling of 1,2‐diethynylbenzene derivatives, were reacted with organic azides. As compared to the well‐known strain‐promoted azide‐alkyne cycloaddition (SpAAC) of 5,6,11,12‐tetradehydrodibenzo[a,e][8]annulene, the reactivity of the DBA alkynes was lower due to the lower strain energy. However, the regioselective double azide addition occurred without any side reactions under mild conditions, yielding bis‐triazole products. The structures of the products were confirmed by an X‐ray crystal structure analysis, and the reaction mechanism was studied by 1H‐NMR spectroscopy and computational studies. It was also found that the DBAs were hardly fluorescent, while the bis‐triazole products showed a green fluorescence with quantum yields up to 5.1 %. Finally, the new strain‐promoted double azide addition to the DBAs was used for step‐growth polymerization, successfully producing a high molecular weight triazole polymer.  相似文献   

17.
An efficient synthesis of enantioenriched hydroquinazoline cores via a novel bifunctional iminophosphorane squaramide catalyzed intramolecular aza-Michael reaction of urea-linked α,β-unsaturated esters is described. The methodology exhibits a high degree of functional group tolerance around the forming hydroquinazoline aryl core and wide structural variance on the nucleophilic N atom of the urea moiety. Excellent yields (up to 99%) and high enantioselectivities (up to 97 : 3 er) using both aromatic and less acidic aliphatic ureas were realized. The potential industrial applicability of the transformation was demonstrated in a 20 mmol scale-up experiment using an adjusted catalyst loading of 2 mol%. The origin of enantioselectivity and reactivity enhancement provided by the squaramide motif has been uncovered computationally using density functional theory (DFT) calculations, combined with the activation strain model (ASM) and energy decomposition analysis (EDA).

The activation of both aromatic and aliphatic ureas as N-centered nucleophiles in intramolecular Michael addition reactions to α,β-unsaturated esters was achieved under bifunctional iminophosphorane squaramide superbase catalysis.  相似文献   

18.
Herein we successfully developed a ring-fusion approach to extend the conjugation length of phenothiazines and synthesized a series of novel extended phenothiazines 1–5. The intriguing π-conjugation length-dependent photophysical and redox properties of 1–5, and their photocatalytic performance towards visible-light-driven oxidative coupling reactions of amines were systematically investigated. The results indicated that this series of extended phenothiazines exhibited continuous red shifts of light absorption with increasing numbers of fused rings. As compared with the conventional phenothiazine (PTZ), all the extended phenothiazines displayed reversible redox behavior and maintained a strong excited-state reduction potential as well. Consequently, 3, 4 and 5 with longer effective conjugation lengths could efficiently catalyze the oxidative coupling of amines to imines under visible-light irradiation; by comparison, the shorter 1, 2 and PTZ could only catalyze such reactions in the presence of UV light. Moreover, 3 showed superior catalytic performance which can result in better yields within a shorter reaction time, and in a broad substrate scope. Finally, a direct and efficient conversion of amines to imines under sunlight in an air atmosphere was successfully realized. We believe that our study including the new phenothiazine modification methodology and the newly developed extended phenothiazine-based photocatalysts will open up a new way to develop novel phenothiazine-based materials for optoelectronic and catalytic applications.

Herein, we successfully developed a ring-fusion approach to extend the conjugation length of phenothiazines that were demonstrated to be efficient photocatalysts for visible-light-driven oxidative coupling reactions of amines under an air atmosphere.  相似文献   

19.
The 4-(2-[3,4-dimethoxyphenoxy] phenoxy) phthalonitrile was synthesized as the starting material of new syntheses. Zinc, copper, and cobalt phthalocyanines were achieved by reaction of starting compound with Zn(CH3COO)2, CuCl2, and CoCl2 metal salts. Basic spectroscopic methods such as nuclear magnetic resonance electronic absorption, mass and infrared spectrometry were used in the structural characterization of the compounds. Absorption, excitation, and emission measurements of the fluorescence zinc phthalocyanine compound were also investigated in THF. Then, structural, energy, and electronic properties for synthesized metallophthalocyanines were determined by quantum chemical calculations, including the DFT method. The bandgap of HOMO and LUMO was determined to be chemically active. Global reactivity (I, A, η, s, μ, χ, ω) and nonlinear properties were studied. In addition, molecular electrostatic potential (MEP) maps were drawn to identify potential reactive regions of metallophthalocyanine (M-Pc) compounds. Photovoltaic performances of phthalocyanine compounds for dye sensitive solar cells were investigated. The solar conversion efficiency of DSSC based on copper, zinc, and cobalt phthalocyanine compounds was 1.69%, 1.35%, and 1.54%, respectively. The compounds have good solubility and show nonlinear optical properties. Zinc phthalocyanine gave fluorescence emission.  相似文献   

20.
In this study, C-dots were facilely synthesized via microwave irradiation using citric acid and ethylenediamine as carbon precursors. The fluorescence emissions of the C-dots could be selectively quenched by Fe3+, and the degree of quenching was linearly related to the concentrations of Fe3+ presented. This phenomenon was utilized to develop a sensitive fluorescence assay for Fe3+ detection with broad linear range (0–250, 250–1200 μmol/L) and low detection limit (1.68 μmol/L). Most importantly, the assay demonstrated high reliability towards samples in deionized water, tap water and lake water, which should find potential applications for Fe3+ monitoring in complicated environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号