首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten polyketide derivatives (1–10), including a new natural product named (E)-2,4-dihydroxy-3-methyl-6-(2-oxopent-3-en-1-yl) benzaldehyde (1), and five known diketopiperazines (11–15), were isolated from the mangrove-sediment-derived fungus Aspergillus sp. SCSIO41407. The structures of 1–15 were determined via NMR and MS spectroscopic analysis. In a variety of bioactivity screening, 3 showed weak cytotoxicity against the A549 cell line, and 2 exhibited weak antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 3, 5, and 6 showed inhibition against acetylcholinesterase (AChE) with IC50 values of 23.9, 39.9, and 18.6 μM. Compounds 11, 12, and 14 exhibited obvious inhibitory activities of lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) with IC50 values of 19.2, 20.9, and 8.7 μM, and they also suppressed RANKL-induced osteoclast differentiation in bone marrow macrophages cells (BMMCs), with the concentration of 5 μM. In silico molecular docking with AChE and NF-κB p65 protein were also performed to understand the inhibitory activities, and 1, 11–14 showed obvious protein/ligand-binding effects to the NF-κB p65 protein.  相似文献   

2.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   

3.
Punica granatum L. (Punicaceae) is a popular fruit all over the world. Owning to its enriched polyphenols, P. granatum has been widely used in treating inflammation-related diseases, such as cardiovascular diseases and cancer. Twenty polyphenols, containing nine unreported ones, named punicagranins A–I (1–9), along with eleven known isolates (10–20), were obtained from the peels. Their detailed structures were elucidated based on UV, IR, NMR, MS, optical rotation, ECD analyses and chemical evidence. The potential anti-inflammatory activities of all polyphenols were examined on a lipopolysaccharide (LPS)-induced inflammatory macrophages model, which indicated that enhancing nitric oxide (NO) production in response to inflammation stimulated in RAW 264.7 cells was controlled by compounds 1, 3, 5–8, 10, 11, 14 and 16–20 in a concentration-dependent manner. The investigation of structure–activity relationships for tannins 6–8 and 12–20 suggested that HHDP, flavogallonyl and/or gallagyl were key groups for NO production inhibitory activity. Western blotting indicated that compounds 6–8 could down-regulate the phosphorylation levels of proteins p38 MAPK, IKKα/β, IκBα and NF-κB p65 as well as inhibit the levels of inflammation-related cytokines and mediators, such as IL-6, TNF-α, iNOS and COX-2, at the concentration of 30 μM. In conclusion, polyphenols are proposed to be the potential anti-inflammatory active ingredients in P. granatum peels, and their molecular mechanism is likely related to the regulation of the p38 MAPK and NF-κB signaling pathways.  相似文献   

4.
As a traditional Chinese medicine, Patrinia scabiosifolia Link has been used to treat various inflammatory-related diseases, and recent studies have shown that it possesses potent anti-inflammatory activity. Therefore, phytochemical investigation on whole plants of P. scabiosifolia were carried out, which led to the isolation of two new iridoid glucosides, patriniscabiosides A (1) and B (2), together with six known compounds (3–8). The structural elucidation of all compounds was performed by HRESIMS and extensive spectroscopic analyses including IR, 1D, 2D NMR, and electronic circular dichroism (ECD). All the isolated compounds were tested for their anti-inflammatory activity using the NF-κB-Dependent Reporter Gene Expression Assay, and compound 3 displayed anti-inflammatory activity through the inhibition of the NF-κB pathway, with an inhibitory rate of 73.44% at a concentration of 10 μM.  相似文献   

5.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aβ) peptides. Aβ induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aβ-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3′,4′,5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aβ-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aβ-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aβ25–35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aβ25–35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aβ25–35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.  相似文献   

6.
A new flavonoid, saffloflavanside (1), a new sesquiterpene, safflomegastigside (2), and a new amide, saffloamide (3), together with twenty-two known compounds (4–25), were isolated from the flowers of Carthamus tinctorius L. Their structures were determined based on interpretation of their spectroscopic data and comparison with those reported in the literature. The protective effects against lipopolysaccharide (LPS)-stimulated damage on human normal lung epithelial (BEAS-2B) cells of the compounds were evaluated using MTT assay and cellular immunofluorescence assay. The results showed that compounds 2–3, 8–11, and 15–19 exhibited protective effects against LPS-induced damage to BEAS-2B cells. Moreover, compounds 2–3, 8–11, and 15–19 can significantly downregulate the level of nuclear translocation of NF-κB p-p65. In summary, this study revealed chemical constituents with lung protective activity from C. tinctorius, which may be developed as a drug for the treatment of lung injury.  相似文献   

7.
8.
Alnus sibirica (AS) is distributed in Korea, Japan, China, and Russia and has reported anti-oxidant, anti-inflammatory, and reducing activities on atopic dermatitis-like skin lesions, along with other beneficial health properties. In the present study, we tried to prove the cancer-preventive activity against prostate cancer. The extracted and isolated compounds, oregonin (1), hirsutenone (2), and hirsutanonol (3), which were isolated from AS, were tested for anti-proliferative activity. To do this, we used the MTT assay; NF-κB inhibitory activity, using Western blotting; apoptosis-inducing activity using flow cytometry; DNA methylation activity, using methylation-specific polymerase chain reaction in androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cell lines. The compounds (1–3) showed potent anti-proliferative activity against both prostate cancer cell lines. Hirsutenone (2) exhibited the strongest NF-κB inhibitory and apoptosis-inducing activities compared with oregonin (1) and hirsutanonol (3). DNA methylation activity, which was assessed for hirsutenone (2), revealed a concentration-dependent enhancement of the unmethylated DNA content and a reduction in the methylated DNA content in both PC-3 and LNCaP cells. Overall, these findings suggest that hirsutenone (2), when isolated from AS, may be a potential agent for preventing the development or progression of prostate cancer.  相似文献   

9.
10.
11.
Six new diterpenoids, blusamiferoids A–F (1–6), including four pimarane-type diterpenoids, one rosane-type diterpenoid (3), and one rearranged abietane-type diterpenoid (6), were isolated from the dry aerial parts of Blumea balsamifera. Their structures were characterized by spectroscopic and computational methods. In particular, the structures of 1 and 4 were confirmed by X-ray crystallography. Compounds 5 and 6 were found to dose-dependently inhibit the production of TNF-α, IL-6, and nitrite oxide, and compound 5 also downregulated NF-κB phosphorylation in lipopolysaccharide (LPS)-induced RAW 264.7 cells.  相似文献   

12.
Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1–6 μM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases.  相似文献   

13.
Flavonols possess several beneficial bioactivities in vitro and in vivo. In this study, two flavonols galangin and quercetin with or without heat treatment (100 °C for 15–30 min) were assessed for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated rat intestinal epithelial (IEC-6) cells and whether the heat treatment caused activity changes. The flavonol dosages of 2.5–20 μmol/L had no cytotoxicity on the cells but could enhance cell viability (especially using 5 μmol/L flavonol dosage). The flavonols could decrease the production of prostaglandin E2 and three pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and simultaneously promote the production of two anti-inflammatory cytokines IL-10 and transforming growth factor-β. The Western-blot results verified that the flavonols could suppress the LPS-induced expression of TLR4 and phosphorylated IκBα and p65, while the molecular docking results also illustrated that the flavonols could bind with TLR4 and NF-κB to yield energy decreases of −(21.9–28.6) kJ/mol. Furthermore, an inhibitor BAY 11-7082 blocked the NF-κB signaling pathway by inhibiting the expression of phosphorylated IκBα/p65 and thus mediated the production of IL-6/IL-10 as the flavonols did, which confirmed the assessed anti-inflammatory effect of the flavonols. Consistently, galangin had higher anti-inflammatory activity than quercetin, while the heated flavonols (especially those with longer heat time) were less active than the unheated counterparts to exert these target anti-inflammatory effects. It is highlighted that the flavonols could antagonize the LPS-caused IEC-6 cells inflammation via suppressing TLR4/NF-κB activation, but heat treatment of the flavonols led to reduced anti-inflammatory efficacy.  相似文献   

14.
Callicarpalongissima has been used as a Yao folk medicine to treat arthritis for years in China, although its active anti-arthritic moieties have not been clarified so far. In this study, two natural phenolic diterpenoids with anti-rheumatoid arthritis (RA) effects, rosmanol and carnosol, isolated from the medicinal plant were reported on for the first time. In type II collagen-induced arthritis DBA/1 mice, both rosmanol (40 mg/kg/d) and carnosol (40 mg/kg/d) alone alleviated the RA symptoms, such as swelling, redness, and synovitis; decreased the arthritis index score; and downregulated the serum pro-inflammatory cytokine levels of interleukin 6 (IL-6), monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor α (TNF-α). Additionally, they blocked the activation of the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)/c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways. Of particular interest was that when they were used in combination (20 mg/kg/d each), the anti-RA effect and inhibitory activity on the TLR4/NF-κB/MAPK pathway were significantly enhanced. The results demonstrated that rosmanol and carnosol synergistically alleviated RA by inhibiting inflammation through regulating the TLR4/NF-κB/MAPK pathway, meaning they have the potential to be developed into novel, safe natural combinations for the treatment of RA.  相似文献   

15.
Objectives: Biosurfactants with anti-inflammatory activity may alleviate skin irritation caused by synthetic surfactants in cleaning products. Sophorolipid (SL) is a promising alternative to synthetic surfactants. However, there are few reports on the anti-inflammatory activity of SL and the underlying mechanism. The purpose of this work is to verify that lipopolysaccharide (LPS)-induced inflammation could be inhibited through targeting the pathway of nuclear factor-κB (NF-κB) in RAW264.7 cells. Methods: The influence of SL on cytokine release was investigated by LPS-induced RAW264.7 cells using ELISA. The quantification of the protein expression of corresponding molecular markers was realized by Western blot analysis. Flow cytometry was employed to determine the levels of Ca2+ and reactive oxygen species (ROS). The relative expression of inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX-2) was determined by RT-PCR. An immunofluorescence assay and confocal microscope were used to observe the NF-κB/p65 translocation from the cytoplasm into the nucleus. The likely targets of SL were predicted by molecular docking analysis. Results: SL showed anti-inflammatory activity and reduced the release of inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO). The experimental results show that SL suppressed the Ca2+ and ROS levels influx in the LPS-induced RAW264.7 cells and alleviated the LPS-induced expression of iNOS and COX-2, the LPS-induced translocation of NF-κB (p65) from the cytoplasm into the nucleus, and the expression of phosphorylated proteins such as p65 and IκBα. Furthermore, molecular docking analysis showed that SL may inhibit inflammatory signaling by competing with LPS to bind TLR4/MD-2 through hydrophobic interactions and by inhibiting IKKβ activation through the hydrogen bonding and hydrophobic interactions. Conclusion: This study demonstrated that SL exerted anti-inflammatory activity via the pathway of NF-κB in RAW264.7 cells.  相似文献   

16.
Three new helvolic acid derivatives (named sarocladilactone A (1), sarocladilactone B (2) and sarocladic acid A (3a)), together with five known compounds (6,16-diacetoxy-25-hy- droxy-3,7-dioxy-29-nordammara-1,17(20)-dien-21-oic acid (3b), helvolic acid (4), helvolinic acid (5), 6-desacetoxy-helvolic acid (6) and 1,2-dihydrohelvolic acid (7)), were isolated from the endophytic fungus DX-THL3, obtained from the leaf of Dongxiang wild rice (Oryza rufipogon Griff.). The structures of the new compounds were elucidated via HR-MS, extensive 1D and 2D NMR analysis and comparison with reported data. Compounds 1, 2, 4, 5, 6 and 7 exhibited potent antibacterial activities. In particular, sarocladilactone B (2), helvolinic acid (5) and 6-desacetoxy-helvolic acid (6) exhibited strongly Staphylococcus aureus inhibitory activity with minimum inhibitory concentration (MIC) values of 4, 1 and 4 μg/mL, respectively. The structure–activity relationship (SAR) of these compounds was primarily summarized.  相似文献   

17.
Two new seco-labdane diterpenoids, nudiflopene N (1) and nudiflopene O (2), and four known compounds were isolated from the leaves of Callicarpa nudiflora. The structures of the new compounds were established by 1D-, 2D-NMR, and HR-ESI-MS spectral analyses. Compounds 1–3 showed inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells, and new compounds 1–2 exhibited more potent inhibitory activity than compound 3. The cytotoxicity of compounds 1–3 against human hepatocellular carcinoma HepG2 cells and human gastric carcinoma SGC-7901 cells were evaluated, while all of them exhibited no cytotoxicity.  相似文献   

18.
Six lignols (1–6), including two new compounds (+)-(7R,8R)-palmitoyl alatusol D (1) and (+)-(7R,8R)-linoleyl alatusol D (2), along with four phenolics (7–10), a neolignan (11), three alkyl aryl ether-type lignans (12–14), two furofuran-type lignans (15–16), three benzofuran-type lignans (17–19), a tetrahydrofuran-type lignan (20), and a dibenzylbutane-type lignan (21) were isolated from the ethyl acetate-soluble fraction of the methanol extract of Platycodon grandiflorum (Jacq.) A. DC. root. The chemical structures of the obtained compounds were elucidated via high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy analyses. The obtained spectroscopic data agreed well with literature. Among the isolated compounds, eighteen (1–7 and 11–21) were isolated from P. grandiflorum and the Campanulaceae family for the first time. This is the first report on lignol and lignan components of P. grandiflorum. The anti-inflammatory effects of the isolated compounds were examined in terms of their ability to inhibit the production of pro-inflammatory cytokines IL-6, IL-12 p40, and TNF-α in lipopolysaccharide-stimulated murine RAW264.7 macrophage cells. Nine compounds (4–6, 12, and 15–19) exhibited inhibitory effects on IL-12 p40 production, eleven compounds (1–6, 12, 15–17, and 19) exhibited inhibitory activity on IL-6 production, and eleven compounds (1–6 and 15–19) exhibited inhibitory effects against TNF-α. These results warrant further investigation into the potential anti-inflammatory activity and general benefits of the phenolic constituents of P. grandiflorum root.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号