首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although adaptive finite element methods for solving elliptic problems often work well in practice, they are usually not proven to converge. For Poisson like problems, an exception is given by the method of Dörfler ([8]), that was later improved by Morin, Nochetto and Siebert ([11]). In this paper we extend these methods by constructing an adaptive finite element method for a singularly perturbed reaction-diffusion equation that, in energy norm, converges uniformly in the size of the reaction term. Moreover, in this algorithm the arising Galerkin systems are solved only inexactly, so that, generally, the number of arithmetic operations is equivalent to the number of triangles in the final partition.This work was supported by the Netherlands Organization for Scientific Research and by the EU-IHP project “Breaking Complexity.”  相似文献   

2.
The numerical solution of acoustic wave propagation problems in planar domains with corners and cracks is considered. Since the exact solution of such problems is singular in the neighborhood of the geometric singularities the standard meshfree methods, based on global interpolation by analytic functions, show low accuracy. In order to circumvent this issue, a meshfree modification of the method of fundamental solutions is developed, where the approximation basis is enriched by an extra span of corner adapted non-smooth shape functions. The high accuracy of the new method is illustrated by solving several boundary value problems for the Helmholtz equation, modelling physical phenomena from the fields of room acoustics and acoustic resonance.  相似文献   

3.
In this paper, under an improved Hardy-Rellich's inequality, we study the existence of multiple and sign-changing solutions for a biharmonic equation in unbounded domain by the minimax method and linking theorem.  相似文献   

4.
In this work, we propose an efficient matrix decomposition algorithm for the Method of Fundamental Solutions when applied to three-dimensional boundary value problems governed by elliptic systems of partial differential equations. In particular, we consider problems arising in linear elasticity in axisymmetric domains. The proposed algorithm exploits the block circulant structure of the coefficient matrices and makes use of fast Fourier transforms. The algorithm is also applied to problems in thermo-elasticity. Several numerical experiments are carried out.  相似文献   

5.
In this paper, we define a new class of finite elements for the discretization of problems with Dirichlet boundary conditions. In contrast to standard finite elements, the minimal dimension of the approximation space is independent of the domain geometry and this is especially advantageous for problems on domains with complicated micro-structures. For the proposed finite element method we prove the optimal-order approximation (up to logarithmic terms) and convergence estimates valid also in the cases when the exact solution has a reduced regularity due to re-entering corners of the domain boundary. Numerical experiments confirm the theoretical results and show the potential of our proposed method.  相似文献   

6.
In this paper, we discuss with guaranteed a priori and a posteriori error estimates of finite element approximations for not necessarily coercive linear second order Dirichlet problems. Here, ‘guaranteed’ means we can get the error bounds in which all constants included are explicitly given or represented as a numerically computable form. Using the invertibility condition of concerning elliptic operator, guaranteed a priori and a posteriori error estimates are formulated. This kind of estimates plays essential and important roles in the numerical verification of solutions for nonlinear elliptic problems. Several numerical examples that confirm the actual effectiveness of the method are presented.  相似文献   

7.
8.
In a recent paper by the current authors a new methodology called the Extended-Domain-Eigenfunction-Method (EDEM) was proposed for solving elliptic boundary value problems on annular-like domains. In this paper we present and investigate one possible numerical algorithm to implement the EDEM. This algorithm is used to solve modified Helmholtz BVPs on annular-like domains. Two examples of annular-like domains are studied. The results and performance are compared with those of the well-known boundary element method (BEM). The high accuracy of the EDEM solutions and the superior efficiency of the EDEM over the BEM, make EDEM an excellent alternate candidate to use in the animation industry, where speed is a predominant requirement, and by the scientific community where accuracy is the paramount objective.  相似文献   

9.
A systematic treatment of the three-dimensional Poisson equation via singular and hypersingular boundary integral equation techniques is investigated in the context of a Galerkin approximation. Developed to conveniently deal with domain integrals without a volume-fitted mesh, the proposed method initially converts domain integrals featuring the Newton potential and its gradient into equivalent surface integrals. Then, the resulting boundary integrals are evaluated by means of well-established cubature methods. In this transformation, weakly-singular domain integrals, defined over simply- or multiply-connected domains with Lipschitz boundaries, are rigorously converted into weakly-singular surface integrals. Combined with the semi-analytic integration approach developed for potential problems to accurately calculate singular and hypersingular Galerkin surface integrals, this technique can be employed to effectively deal with mixed boundary-value problems without the need to partition the underlying domain into volume cells. Sample problems are included to validate the proposed approach.  相似文献   

10.
In this paper, we investigate the pseudospectral method on quadrilaterals. Some results on Legendre-Gauss-type interpolation are established, which play important roles in the pseudospectral method for partial differential equations defined on quadrilaterals. As examples of applications, we propose pseudospectral methods for two model problems and prove their spectral accuracy in space. Numerical results demonstrate the efficiency of the suggested algorithms. The approximation results and techniques developed in this paper are also applicable to other problems defined on quadrilaterals.  相似文献   

11.
We study the existence of periodic solutions for a second order non-autonomous dynamical system containing variable kinetic energy terms. Our assumptions balance the interaction between the kinetic energy and the potential energy with neither one dominating the other. We study sublinear problems and the existence of non-constant solutions.  相似文献   

12.
Processes that can be modelled with numerical calculations of acoustic pressure fields include medical and industrial ultrasound, echo sounding, and environmental noise. We present two methods for making these calculations based on Helmholtz equation. The first method is based directly on the complex-valued Helmholtz equation and an algebraic multigrid approximation of the discretized shifted-Laplacian operator; i.e. the damped Helmholtz operator as a preconditioner. The second approach returns to a transient wave equation, and finds the time-periodic solution using a controllability technique. We concentrate on acoustic problems, but our methods can be used for other types of Helmholtz problems as well. Numerical experiments show that the control method takes more CPU time, whereas the shifted-Laplacian method has larger memory requirement.  相似文献   

13.
In this paper we establish the existence and the uniqueness of positive solutions for Dirichlet boundary value problems of nonlinear elliptic equations with singularity. We obtain the existence and the uniqueness by using the mixed monotone method in the cone theory. Moreover, we give an iterative method of constructing the solution. The rate of convergence of the iterative sequence is analyzed.  相似文献   

14.
Recently, new higher order finite volume methods (FVM) were introduced in [Z. Cai, J. Douglas, M. Park, Development and analysis of higher order finite volume methods over rectangles for elliptic equations, Adv. Comput. Math. 19 (2003) 3-33], where the linear system derived by the hybridization with Lagrange multiplier satisfying the flux consistency condition is reduced to a linear system for a pressure variable by an appropriate quadrature rule. We study the convergence of an iterative solver for this linear system. The conjugate gradient (CG) method is a natural choice to solve the system, but it seems slow, possibly due to the non-diagonal dominance of the system. In this paper, we propose block iterative methods with a reordering scheme to solve the linear system derived by the higher order FVM and prove their convergence. With a proper ordering, each block subproblem can be solved by fast methods such as the multigrid (MG) method. The numerical experiments show that these block iterative methods are much faster than CG.  相似文献   

15.
In this paper we consider a singularly perturbed elliptic model problem with two small parameters posed on the unit square. The problem is solved numerically by the finite element method using piecewise linear or bilinear elements on a layer-adapted Shishkin mesh. We prove that method with bilinear elements is uniformly convergent in an energy norm. Numerical results confirm our theoretical analysis.  相似文献   

16.
Summary In this paper we apply the coupling of boundary integral and finite element methods to solve a nonlinear exterior Dirichlet problem in the plane. Specifically, the boundary value problem consists of a nonlinear second order elliptic equation in divergence form in a bounded inner region, and the Laplace equation in the corresponding unbounded exterior region, in addition to appropriate boundary and transmission conditions. The main feature of the coupling method utilized here consists in the reduction of the nonlinear exterior boundary value problem to an equivalent monotone operator equation. We provide sufficient conditions for the coefficients of the nonlinear elliptic equation from which existence, uniqueness and approximation results are established. Then, we consider the case where the corresponding operator is strongly monotone and Lipschitz-continuous, and derive asymptotic error estimates for a boundary-finite element solution. We prove the unique solvability of the discrete operator equations, and based on a Strang type abstract error estimate, we show the strong convergence of the approximated solutions. Moreover, under additional regularity assumptions on the solution of the continous operator equation, the asymptotic rate of convergenceO (h) is obtained.The first author's research was partly supported by the U.S. Army Research Office through the Mathematical Science Institute of Cornell University, by the Universidad de Concepción through the Facultad de Ciencias, Dirección de Investigación and Vicerretoria, and by FONDECYT-Chile through Project 91-386.  相似文献   

17.
Many parallel iterative algorithms for solving symmetric, positive definite problems proceed by solving in each iteration, a number of independent systems on subspaces. The convergence of such methods is determined by the spectrum of the sums of orthogonal projections on those subspaces, while the convergence of a related sequential method is determined by the spectrum of the product of complementary projections. We study spectral properties of sums of orthogonal projections and in the case of two projections, characterize the spectrum of the sum completely in terms of the spectrum of the product.This work was supported in part by the Norwegian Research Council for Science and the Humanities under grant D.01.08.054 and by The Royal Norwegian Council for Scientific and Industrial Research under grant IT2.28.28484; also supported in part by the Air Force Office of Scientific Research under grant AFOSR-86-0126 and by the National Science Foundation under grant DMS-8704169.  相似文献   

18.
This work studies linear elliptic problems under uncertainty. The major emphasis is on the deterministic treatment of such uncertainty. In particular, this work uses the Worst Scenario approach for the characterization of uncertainty on functional outputs (quantities of physical interest). Assuming that the input data belong to a given functional set, eventually infinitely dimensional, this work proposes numerical methods to approximate the corresponding uncertainty intervals for the quantities of interest. Numerical experiments illustrate the performance of the proposed methodology.  相似文献   

19.
In this paper, the Extended-Domain-Eigenfunction-Method (EDEM) is combined with the Level Set Method in a composite numerical scheme for simulating a moving boundary problem. The liquid velocity is obtained by formulating the problem in terms of the EDEM methodology and solved using a least square approach. The propagation of the free surface is effected by a narrow band Level Set Method. The two methods both pass information to each other via a bridging process, which allows the position of the interface to be updated. The numerical scheme is applied to a series of problems involving a gas bubble submerged in a viscous liquid moving subject to both an externally generated flow and the influence of surface tension.  相似文献   

20.
A nonlinear coupled elliptic system modelling a large class of engineering problems was discussed in [A.F.D. Loula, J. Zhu, Finite element analysis of a coupled nonlinear system, Comp. Appl. Math. 20 (3) (2001) 321–339; J. Zhu, A.F.D. Loula, Mixed finite element analysis of a thermally nonlinear coupled problem, Numer. Methods Partial Differential Equations 22 (1) (2006) 180–196]. The convergence analysis of iterative finite element approximation to the solution was done under an assumption of ‘small’ solution or source data which guarantees the uniqueness of the nonlinear coupled system. Generally, a nonlinear system may have multiple solutions. In this work, the regularity of the weak solutions is further studied. The nonlinear finite element approximations to the nonsingular solutions are then proposed and analyzed. Finally, the optimal order error estimates in H1H1-norm and L2L2-norm as well as in W1,pW1,p-norm and LpLp-norm are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号