首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We have unified quantum and classical computing in open quantum systems called qACP which is a quantum generalization of process algebra ACP. But, an axiomatization of quantum and classical processes with an assumption of closed quantum systems is still missing. For closed quantum systems, unitary operator, quantum measurement and quantum entanglement are three basic components of quantum computing. This leads to probability unavoidable. Along the solution of qACP to unify quantum and classical computing in open quantum systems, we unify quantum and classical computing with an assumption of closed systems under the framework of ACP-like probabilistic process algebra. This unification make it can be used widely in verification of quantum and classical computing mixed systems, such as most quantum communication protocols.

  相似文献   

2.
3.
In classical stochastic theory, the joint probability distributions of a stochastic process obey by definition the Kolmogorov consistency conditions. Interpreting such a process as a sequence of physical measurements with probabilistic outcomes, these conditions reflect that the measurements do not alter the state of the underlying physical system. Prominently, this assumption has to be abandoned in the context of quantum mechanics, yet there are also classical processes in which measurements influence the measured system. Here, conditions that characterize uniquely classical processes that are probed by a reasonable class of such invasive measurements are derived. We then analyze under what circumstances such classical processes can simulate the statistics arising from quantum processes associated with informationally-complete measurements. It is expected that this investigation will help build a bridge between two fundamental traits of non-classicality, namely, coherence and contextuality.  相似文献   

4.
5.
We propose a novel framework to describe the time-evolution of dilute classical and quantum gases, initially out of equilibrium and with spatial inhomogeneities, towards equilibrium. Briefly, we divide the system into small cells and consider the local equilibrium hypothesis. We subsequently define a global functional that is the sum of cell H-functionals. Each cell functional recovers the corresponding Maxwell–Boltzmann, Fermi–Dirac, or Bose–Einstein distribution function, depending on the classical or quantum nature of the gas. The time-evolution of the system is described by the relationship dH/dt0, and the equality condition occurs if the system is in the equilibrium state. Via the variational method, proof of the previous relationship, which might be an extension of the H-theorem for inhomogeneous systems, is presented for both classical and quantum gases. Furthermore, the H-functionals are in agreement with the correspondence principle. We discuss how the H-functionals can be identified with the system’s entropy and analyze the relaxation processes of out-of-equilibrium systems.  相似文献   

6.
Journal of Statistical Physics - Among the predictive hidden Markov models that describe a given stochastic process, the $$\epsilon \text{-machine }$$ is strongly minimal in that it minimizes every...  相似文献   

7.
In this paper we introduce a minimal formal intuitionistic propositional Gentzen sequent calculus for handling quantum types, quantum storage being introduced syntactically along the lines of Girard's of course operator !. The intuitionistic fragment of orthologic is found to be translatable into this calculus by means of a quantum version of the Heyting paradigm. When realized in the category of finite dimensional Hilbert spaces, the familiar qubit arises spontaneously as the irreducible storage capable quantum computational unit, and the necessary involvement of quantum entanglement in the quantum duplication process is plainly and explicitly visible. Quantum computation is modelled by a single extra axiom, and reproduces the standard notion when interpreted in a larger category.  相似文献   

8.
An holistic extension for classical propositional logic is introduced in the framework of quantum computation with mixed states. The mentioned extension is obtained by applying the quantum Fredkin gate to non-factorizable bipartite states. In particular, an extended notion of classical contradiction is studied in this holistic framework.  相似文献   

9.
The N-qubit system characterized by an effective spin \(S = 2^{N - 1} - {1/2}\) is carried out in the representation of two coupled harmonic oscillators. It is shown that quantum computing results obtained with spinor algebra can be obtained also using the algebra of two coupled harmonic oscillators which is a convenient formalism, especially in the case of large number of qubits. In this formalism the non-abelian and abelian groups of the order of 16 related to one- and two-qubit systems were found. The structure of Cayley tables of those groups is different due to different commutation (anticommutation) relations for operators forming each group.  相似文献   

10.
We describe p-mechanical (Kisil, V. V. (1996). Journal of Natural Geometry 9(1), 1–14; Kisil, V. V. (1999). Advances in Mathematics 147(1), 35–73; Prezhdo, O. V. and Kisil, V. V. (1997). Physical Review A 56(1), 162–175) brackets that generate quantum (commutator) and classical (Poisson) brackets in corresponding representations of the Heisenberg group. We do not use any kind of semiclassical approximation or limiting procedure for 0  相似文献   

11.
In this continuation of an earlier paper we develop further the theme of quantum logical specification and derive from it some apparently physically viable instantiations of potential quantum computing devices. Specifically, in the case of a one-parameter set of terms (or labels)—read as instants of time—we find, emerging quite naturally from the algebraic setup, the paradigm for a single qubit epitomized by the case of a two-state fermion interacting with an external single mode boson. This covers the cases: cavity QED, trapped ions, and, when the qubits are multiplexed appropriately, NMR based systems. (This case degenerates to one in which only bosons are relevant as in the case of pure bosonic harmonic oscillator models in the “dual rail” representation. Such models fly in the face of the logic itself, thus clearly revealing even at this level their well-known shortcomings as practical quantum computing devices. Here as elsewhere logical constraints apparently dominate physical ones.) In a final section we indicate briefly how this process exactly generalizes, in the case of a manifold of terms more general than the one-parameter case, to yield the notion of holonomic quantum computation. In the course of this investigation we find an interpretation of path integrals as limits of sequences of logical CUTS, thus establishing a link—though still tenuous—between ensembles of acts of quantum computation and Lagrangians.  相似文献   

12.
This paper is the first review devoted to the localized-particles approach for strongly anharmonic crystals. We present mathematical basises of such an approach for classical and quantum cases and we discuss its different applications. In the framework of this method various technical tricks and detailes could, of course, be changed, but the main idea should be conserved: that of the localization of atoms, forming a solid, near their lattice sites. The localized-particles approach describes not only collective excitations as the phonons but the state of particles themselves too; that is why it is much more convenient for describing crystals with defects, crystal-gas intersurfaces, disordered solids and some phase transitions.  相似文献   

13.
It is shown that the identity rule — arule of inference which has the form of modus ponens butwith the operation of identity substituted for theoperation of implication — turns any ortholatticeinto either an orthomodular lattice (a model of a quantumtheory) or a distributive lattice (a model of aclassical theory). It is also shown that — asopposed to the implication algebras — one cannotconstruct an identity algebra although the identity rule contains theoperation of identity as the only operation.  相似文献   

14.
The discovery that any classical random variable with all moments gives rise to a full quantum theory (that in the Gaussian and Poisson cases coincides with the usual one) implies that a quantum–type formalism will enter into practically all applications of classical probability and statistics. The new challenge consists in finding the classical interpretation, for different types of classical contexts, of typical quantum notions such as entanglement, normal order, equilibrium states, etc. As an example, every classical symmetric random variable has a canonically associated conjugate momentum. In usual quantum mechanics (associated with Gaussian or Poisson classical random variables), the interpretation of the momentum operator was already clear to Heisenberg. How should we interpret the conjugate momentum operator associated with classical random variables outside the Gauss–Poisson class? The Introduction is intended to place in historical perspective the recent developments that are the main object of the present exposition.  相似文献   

15.
16.
Correlations of spins in a system of entangled particles are inconsistent with Kolmogorov’s probability theory (KPT), provided the system is assumed to be non-contextual. In the Alice–Bob EPR paradigm, non-contextuality means that the identity of Alice’s spin (i.e., the probability space on which it is defined as a random variable) is determined only by the axis $\alpha _{i}$ chosen by Alice, irrespective of Bob’s axis $\beta _{j}$ (and vice versa). Here, we study contextual KPT models, with two properties: (1) Alice’s and Bob’s spins are identified as $A_{ij}$ and $B_{ij}$ , even though their distributions are determined by, respectively, $\alpha _{i}$ alone and $\beta _{j}$ alone, in accordance with the no-signaling requirement; and (2) the joint distributions of the spins $A_{ij},B_{ij}$ across all values of $\alpha _{i},\beta _{j}$ are constrained by fixing distributions of some subsets thereof. Of special interest among these subsets is the set of probabilistic connections, defined as the pairs $\left( A_{ij},A_{ij'}\right) $ and $\left( B_{ij},B_{i'j}\right) $ with $\alpha _{i}\not =\alpha _{i'}$ and $\beta _{j}\not =\beta _{j'}$ (the non-contextuality assumption is obtained as a special case of connections, with zero probabilities of $A_{ij}\not =A_{ij'}$ and $B_{ij}\not =B_{i'j}$ ). Thus, one can achieve a complete KPT characterization of the Bell-type inequalities, or Tsirelson’s inequalities, by specifying the distributions of probabilistic connections compatible with those and only those spin pairs $\left( A_{ij},B_{ij}\right) $ that are subject to these inequalities. We show, however, that quantum-mechanical (QM) constraints are special. No-forcing theorem says that if a set of probabilistic connections is not compatible with correlations violating QM, then it is compatible only with the classical–mechanical correlations. No-matching theorem says that there are no subsets of the spin variables $A_{ij},B_{ij}$ whose distributions can be fixed to be compatible with and only with QM-compliant correlations.  相似文献   

17.
We propose a conceptual framework for understanding the relationship between observables and operators in mechanics. To do so, we introduce a postulate that establishes a correspondence between the objective properties permitting to identify physical states and the symmetry transformations that modify their gauge dependant properties. We show that the uncertainty principle results from a faithful—or equivariant—realization of this correspondence. It is a consequence of the proposed postulate that the quantum notion of objective physical states is not incomplete, but rather that the classical notion is overdetermined.  相似文献   

18.
p-Mechanics is a consistent physical theory which describes both quantum and classical mechanics simultaneously (V. V. Kisil, p-Mechanics as a physical theory. An Introduction, E-print:arXiv:quant-ph/0212101, 2002; International Journal of Theoretical Physics 41(1), 63–77, 2002). We continue the development of p-mechanics by introducing the concept of states. The set of coherent states we introduce allows us to evaluate classical observables at any point of phase space and simultaneously to evaluate quantum probability amplitudes. The example of the forced harmonic oscillator is used to demonstrate these concepts.  相似文献   

19.
We examine to what extent the correlation between two quantum observables at a mixed state can be separated into a classical and a quantum term. The nonunique decomposition of quantum mixed states into pure states makes such a separation ambiguous. We outline this fact by a simple example, which also shows that classical and quantum correlations may cancel each other out.  相似文献   

20.
The Newton equation of motion is derived from quantum mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号