首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Abstract

Heterogenization of organic and metallic catalysts with a solid support is an attractive and useful strategy to solve the separation and recovery problems of catalysts. During the last decade, magnetic nanoparticles (MNPs) in general ferrite nanoparticles (MFe2O4 NPs) have emerged as a highly efficient support for catalysis, due to their simple fabrication, modification, and large surface area ratio. In this paper, we provide an overview of the utilization of organic and metallic molecules immobilized on magnetic ferrite nanoparticles (MFe2O4 NPs) as attractive and efficient catalytic systems in wide variety of in organic reactions.  相似文献   

3.
Advanced nanotechnology is an enormously growing area due to its massive scope of applications for diverse domains of applied science and engineering. Numerous types of synthetic procedures are utilized for the creation of nanoparticles (NPs) due to their myriad application scenarios. However, known conventional physical and chemical strategies have a number of shortcomings. Consequently, the designs of facile, clean, safer, non-noxious, reliable, inexpensive and eco-friendly processes for manufacturing of NPs are being explored actively to circumvent these barriers. The phytogenic fabrication of NPs is much safer, one-pot, facile, and a sustainable methodology. Hence, divergent biological means like the use of plants, biopolymers, fungi, fibres, bacteria, enzymes, etc., are pursued the procurable biogenic fabrication of metallic NPs. In this review paper, current findings on the bio-inspired fabrication of silver chloride nanoparticles (AgCl-NPs) are deliberated, which have with their useful appliances in assorted sectors. The experimental protocols, advanced characterization techniques along with diverse applications of biogenically synthesized AgCl-NPs have been highlighted.  相似文献   

4.
Yang J  Gunn J  Dave SR  Zhang M  Wang YA  Gao X 《The Analyst》2008,133(2):154-160
Recent advances in nanotechnology have produced a variety of nanoparticles ranging from semiconductor quantum dots (QDs), magnetic nanoparticles (MNPs), metallic nanoparticles, to polymeric nanoparticles. Their unique electronic, magnetic, and optical properties have enabled a broad spectrum of biomedical applications such as ultrasensitive detection, medical imaging, and specific therapeutics. MNPs made from iron oxide, in particular, have attracted extensive interest and have already been used in clinical studies owing to their capability of deep-tissue imaging, non-immunogenesis, and low toxicity. In this Research Highlight article, we attempt to highlight the recent breakthroughs in MNP synthesis based on a non-hydrolytic approach, nanoparticle (NP) surface engineering, their unique structural and magnetic properties, and current applications in ultrasensitive detection and imaging with a special focus on innovative bioassays. We will also discuss our perspectives on future research directions.  相似文献   

5.
Nanoparticles (NPs) exhibit interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be observed in their bulk counterparts. The synthesis of NPs (i.e., crystalline particles ranging in size from 1 to 100 nm) has been intensely studied in the past decades. Magnetic nanoparticles (MNPs) form a particularly attractive class of NPs and have found numerous applications such as in magnetic resonance imaging to visualize cancer, cardiovascular, neurological and other diseases. Other uses include drug targeting, tissue imaging, magnetic immobilization, hyperthermia, and magnetic resonance imaging. MNPs, due to their magnetic properties, can be easily separated from (often complex) matrices and manipulated by applying external magnetic field. Near-infrared to visible upconversion luminescent nanoparticles (UCLNPs) form another type of unusual nanoparticles. They are capable of emitting visible light upon NIR light excitation. Lanthanide-doped (Yb, Er) hexagonal NaYF? UCLNPs are the most efficient upconversion phosphors known up to now. The use of UCLNPs for in vitro imaging of cancer cells and in vivo imaging in tissues has been demonstrated. UCLNPs show great potential as a new class of luminophores for biological, biomedical, and sensor applications. We are reporting here on our first results on the combination of MNP and UCLNP technology within an ongoing project supported by the DFG and the FWF (Austria).  相似文献   

6.
许敏  柴亚红  姚立 《化学通报》2018,81(10):867-878
磁性纳米粒子(MNPs)的合成开发在基础科学研究和技术应用方面得到了深入的发展。与大块的磁性材料不同,MNPs展现出了独特的磁性,并且可以通过系统的纳米尺寸工程调控它们的性能。本文首先简要介绍了MNPs的基本特征,总结了不同MNPs的制备方法,包括金属、合金、金属氧化物和多功能的MNPs;重点关注了可精确控制MNPs尺寸、形状、组成和结构的有机相合成方法;最后讨论了这些MNPs在生物方面的应用。  相似文献   

7.
Current advancements in green synthesis of materials especially nanoparticles have led to conservation of natural and non-renewable resources along with reduction in environmental pollution. Development of cost-effective, simple and eco-friendly routes for the synthesis of nanoparticles is very important. All over the world, a wide variety of biogenic sources have been put to trial as a source of green agents to facilitate synthesis process. In addition to this, environmentally benign solvents are also being used these days in order to promote green synthesis. In this review, an attempt has been made to familiarise the readers with the different green routes for the synthesis of nanoparticles.  相似文献   

8.
In this report is discussed a novel, easy, and general synthesis method to prepare zerovalent iron (ZVI) and copper (ZV Cu) nanoparticles (NPs), from colloid dispersions in an environmental friendly organic solvent, ethylene glycol (EG). Conventional metallic salts are used as nanoparticle precursors; sodium borohydride (NaBH4) is the reducing agent, and triethylamine (TEA) is used as the nanoparticle stabilizer. The chemical changes take place instantaneously under normal reaction conditions. Small iron (alpha-Fe0 phase) and copper (fcc phase) NPs with average diameters of 10.2 +/- 3.3 and 9.5 +/- 2.5 nm, respectively, were obtained. In both cases, the experimental evidence reveals the absence of any metal oxide shell coating the particle surfaces, and their powders remain stable, under aerobic conditions at least for 3 weeks. ZVI NPs were characterized by X-RD, M?ssbauer, and Raman spectroscopies and by EELS coupled to HR-TEM. Otherwise, copper NPs were characterized by X-RD, Z-contrast, and HR-TEM. This synthesis pathway is particularly suitable for large-scale and high-quality zerovalent metallic nanoparticle (ZV M NP) production due to its simple process and low cost.  相似文献   

9.
In this paper, we demonstrated an effective enviromentally friendly synthesis route to prepare noble metallic (Au, Ag, Pt and Pd) nanoparticles (NPs) networks mediated by type I collagen in the absence of any seeds or surfactants. In the reactions, type I collagen served as stabilizing agent and assembly template for the synthesized metallic NPs. The hydrophobic interaction between collagen and mica interface as well as the hydrogen bonds between inter- and intra-collagen molecules play important roles in the formation of collagen-metallic NPs networks. The noble metallic NPs networks have many advantages in the applications of Surface-Enhanced Raman Scattering (SERS) and electrochemistry detection. Typically, the as-prepared Ag NPs networks reveal great Raman enhancement activity for 4-ATP, and can even be used to detect low concentration of DNA base, adenine, without any label step. Furthermore, the cyclic voltammograms showed Pt NPs networks have good electrocatalytic ability for the reduction of O2.  相似文献   

10.
Among different metallic nanoparticles, sliver nanoparticles (Ag NPs) are one of the most essential and fascinating nanomaterials. Importantly, among the metal based nanoparticles, Ag NPs play a key role in various fields such as biomedicine, biosensors, catalysis, pharmaceuticals, nanoscience and nanotechnology, particularly in nanomedicine. A main concern about the chemical synthesis of Ag NPs is the production of hazardous chemicals and toxic wastes. To overcome this problem, many research studies have been carried out on the green synthesis of Ag NPs using green sources such as plant extracts, microorganisms and some biopolymers without formation of hazardous wastes. Among green sources, plants could be remarkably valuable to exploring the biosynthesis of Ag NPs. In this review, the green synthesis of Ag‐based nanocatalysts such as Ag NPs, AgPd NPs, Au?Ag NPs, Ag/AgPd NPs, Ag/Cu NPs, Ag@AgCl NPs, Au?Ag@AgCl nanocomposite, Ag?Cr‐AC nanocomposite and Ag NPs immobilized on various supports such as Natrolite zeolite, bone, ZnO, seashell, hazelnut shell, almond shell, SnO2, perlite, ZrO2, TiO2, α‐Al2O3, CeO2, reduced graphene oxide (rGO), h‐Fe2O3@SiO2, and Fe3O4 using numerous plant extracts as reducing and stabilizing agents in the absence of hazardous surfactant and capping agents has been focused. This work describes the state of the art and future challenges in the biosynthesis of Ag‐based nanocatalysts. The fact about the application of living plants in metal nanoparticle (MNPs) industry is that it is a more economical and efficient biosynthesis biosynthetic procedure. In addition, the catalytic activities of the synthesized, Ag‐based recyclable nanocatalysts using various plant extracts in several chemical reactions such as oxidation, reduction, coupling, cycloaddition, cyanation, epoxidation, hydration, degradation and hydrogenation reactions have bben extensively discussed.  相似文献   

11.
The use of metallic nanoparticles (NPs) has exponentially increased in the past decade due to their unique physical and chemical properties at nano-scales [1]. They are added to a myriad of materials and compositions. The key question is not if NPs will enter environmental compartments but rather when. The fate and the stability of NPs in the environment play important roles in determining their environmental distributions and probably control the risk to human health through exposure. Emissions of nanomaterials (NMs) could be intentional or unintentional but occur in particulate, aggregate or embedded states.Despite environmental transformations and changes in their surrounding environment, metallic NPs (M-NPs) tend to exist as stable colloidal aggregates or dispersions. Characterizing NPs and NMs in environmental samples implies determination of their size, their chemical composition and their bulk concentrations in the matrix. Differential size filtration is the most commonly used method to isolate NPs from aqueous matrices. Micro-filtration, nano-filtration, cross-flow filtration, and ultracentrifugation are usually employed to achieve the highest degree of segregation.Chemical characterization of NPs and NMs has traditionally been done using transmission/scanning electron microscopy (TEM/SEM) followed by energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). However, because of their intrinsic limitations, methods have also been combined and validated [e.g., size exclusion and ion chromatography (SEC and IC) with multi-element detection {inductively-coupled plasma mass spectrometry and optical emission spectroscopy (ICP-MS and ICP-OES)].This review describes the current state and the challenges of isolating, segregating and detecting M-NPs in environmental samples. A simple case study shows a common procedure for the analysis of NPs in complex aqueous matrices.  相似文献   

12.
Despite the fact that the magnetic hyperthermia (MH) has been known for more than 75 years, it is still debated in its clinical applications. The generation of a higher temperature at a tumor is called hyperthermia. There is a different of temperature ranges going from 39 to 40 ?°C up to such high temperatures as 80–90 ?°C. However, due to its high potential, MH is used along with nanoparticles as heat intermediaries in the treatment of cancer. Many Magnetic Nanoparticles (MNPs) with several properties and morphological metallic structures have been useful to magnetics hyperthermia therapy. These MNPs are categorized into two groups; magnetic alloy nanoparticles (MANPs) and magnetic metal oxide nanoparticles (MMONPs). The principal challenges of this method are the control of local tumoral temperature and the increase in nanoparticles heating power. The hyperthermia agents derived from magnetic nanoparticles along with magnetic field. In the recent study, hyperthermia thought, dissimilar types of magnetic nanoparticles for hyperthermia, efficacy for cancer therapy, advances, challenges, and future chances have been examined.  相似文献   

13.
Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′ tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.  相似文献   

14.
Accurate measuring of pH is of great significance for various research areas ranging from environmental to chemical and biological sciences. In the past decades, there has been growing interest in the use of nanoparticles (NPs) for pH measurement, especially for intracellular pH sensing and imaging. In this regard, a number of different NP-based fluorescent pH sensors have been developed, which can be classified into three major categories including (I) fluorescent NPs with direct or indirect responses to pH, (II) nonfluorescent NPs that are used only as scaffold and carriers for pH-sensitive fluorescent dyes, and (III) nonfluorescent NPs whose pH-responsive structural change is converted into the fluorescence signal of their conjugated dyes. This review is a complete coverage of all NPs used so far for fluorescence pH sensing. The authors of this review invite readers to find all design strategies for employing semiconductor quantum dot, nanoclusters, carbon-based dots, polymer dots, upconversion NPs, fluorescent metal-organic frameworks, metallic NPs, silica NPs, polymer NPs, micellar NPs, nanogels, and protein NPs for this purpose.  相似文献   

15.
Photocatalysis has been known as one of the promising technologies due to its eco-friendly nature. However, the potential application of many photocatalysts is limited owing to their large bandgaps and inefficient use of the solar spectrum. One strategy to overcome this problem is to combine the advantages of heteroatom-containing supports with active metal centers to accurately adjust the structural parameters. Metal nanoparticles (MNPs) and single atom catalysts (SACs) are excellent candidates due to their distinctive coordination environment which enhances photocatalytic activity. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and carbon nitride (g-C3N4) have shown great potential as catalyst support for SACs and MNPs. The numerous combinations of organic linkers with various heteroatoms and metal ions provide unique structural characteristics to achieve advanced materials. This review describes the recent advancement of the modified MOFs, COFs and g-C3N4 with SACs and NPs for enhanced photocatalytic applications with emphasis on environmental remediation.  相似文献   

16.
Polyaniline (PANI) is one of the most extensively used conducting polymer due to its fascinating properties including conducting, thermal, optical, magnetic and electrochemical properties, simple synthesis procedure and low cost of monomer. It has attracted major attention in a variety of applications including electrochemical sensors, catalysts, supercapacitors and biosensors. However, its limitations such as insolubility in common solvents, low process-ability and poor mechanical properties have led to the development of new approaches to improve it properties. Metal nanoparticles (MNPs) such as silver, gold, copper and palladium have been combined with PANI to improve on its properties which has led to a new class of materials known as metal/PANI nanocomposites. These hybrid nanocomposites incorporate advantages of both MNPs and polymers which effectively improves the properties of the individual materials. Various synthesis techniques including in situ polymerization, ɤ-radiolysis, electrodeposition, complexation, vacuum deposition and interfacial polymerization have been used in the formation of metal/PANI nanocomposites. These nanocomposites have been used in various sensor and biosensor applications due to their excellent conductivity, ease of synthesis, excellent redox potentials, chemical and thermal stability. This review highlights the various metal/PANI nanocomposites, their various synthesis techniques and their application in sensors and biosensors. The importance of these nanocomposites in sensing and signaling various toxic heavy metals such as mercury, lead and silver and toxic gases such as hydrogen sulphide, ammonia and chloroform has been discussed. In addition the review covers the applications of metal/PANI nanocomposites in biosensor systems for the detection of glucose, DNA, protein, cholesterol, drugs and hydrogen peroxide.  相似文献   

17.
Ultrafine metal nanoparticles (MNPs) with size <2 nm are of great interest due to their superior catalytic capabilities. Herein, we report the size-controlled synthesis of gold nanoparticles (Au NPs) by using a thiacalixarene-based coordination cage CIAC-108 as a confined host or stabilizer. The Au NPs encapsulated within the cavity of CIAC-108 (Au@CIAC-108) show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108 (Au/CIAC-108). The cage-embedded Au NPs can be used as a homogeneous catalyst in a mixture of methanol and dichloromethane while as a heterogeneous catalyst in methanol. The homogeneous catalyst Au@CIAC-108-homo exhibits significantly enhanced catalytic activities toward nitroarene reduction and organic dye decomposition, as compared with its larger counterpart Au/CIAC-108-homo and its heterogeneous counterpart Au@CIAC-108-hetero. More importantly, the as-prepared Au@CIAC-108-homo possesses remarkable stability and durability.

The size-controlled synthesis of Au NPs was achieved by using a coordination cage CIAC-108 as a support. The Au NPs encapsulated within the cavity of CIAC-108 show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108.  相似文献   

18.
19.
The present review describes the use of metal-organic frameworks (MOFs) as porous matrices to embed metal nanoparticles (MNPs) and occasionally metal oxide clusters, which are subsequently used as heterogeneous catalysts. The review is organized according to the embedded metal including Pd, Au, Ru, Cu, Pt, Ni and Ag. Emphasis is also given in the various methodologies reported for the formation of the NPs and the characterization techniques. The reactions described with this type of solid catalysts include condensation, hydrogenations, carbon-carbon coupling, alcohol oxidations and methanol synthesis among others. Remaining issues in this field have also been indicated.  相似文献   

20.
This work describes an easy synthesis (one pot) of MFe(2)O(4) (M = Co, Fe, Mn, and Ni) magnetic nanoparticles MNPs by the thermal decomposition of Fe(Acac)(3)/M(Acac)(2) by using BMI·NTf(2) (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) or BMI·PF(6) (1-n-butyl-3-methylimidazolium hexafluorophosphate) ionic liquids (ILs) as recycling solvents and oleylamine as the reducing and surface modifier agent. The effects of reaction temperature and reaction time on the features of the magnetic nanomaterials (size and magnetic properties) were investigated. The growth of the MNPs is easily controlled in the IL by adjusting the reaction temperature and time, as inferred from Fe(3)O(4) MNPs obtained at 150 °C, 200 °C and 250 °C with mean diameters of 8, 10 and 15 nm, respectively. However, the thermal decomposition of Fe(Acac)(3) performed in a conventional high boiling point solvent (diphenyl ether, bp 259 °C), under a similar Fe to oleylamine molar ratio used in the IL synthesis, does not follow the same growth mechanism and rendered only smaller NPs of 5 nm mean diameter. All MNPs are covered by at least one monolayer of oleylamine making them readily dispersible in non-polar solvents. Besides the influence on the nanoparticles growth, which is important for the preparation of highly crystalline MNPs, the IL was easily recycled and has been used in at least 20 successive syntheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号