首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We establish an axiomatization for quantum processes, which is a quantum generalization of process algebra ACP (Algebra of Communicating Processes). We use the framework of a quantum process configuration 〈p, ϱ〉, but we treat it as two relative independent part: the structural part p and the quantum part ϱ, because the establishment of a sound and complete theory is dependent on the structural properties of the structural part p. We let the quantum part ϱ be the outcomes of execution of p to examine and observe the function of the basic theory of quantum mechanics. We establish not only a strong bisimilarity for quantum processes, but also a weak bisimilarity to model the silent step and abstract internal computations in quantum processes. The relationship between quantum bisimilarity and classical bisimilarity is established, which makes an axiomatization of quantum processes possible. An axiomatization for quantum processes called qACP is designed, which involves not only quantum information, but also classical information and unifies quantum computing and classical computing. qACP can be used easily and widely for verification of most quantum communication protocols.

  相似文献   

2.
The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.  相似文献   

3.
Traditionally, there has been a clear distinction between classical systems and quantum systems, particularly in the mathematical theories used to describe them. In our recent work on macroscopic quantum systems, this distinction has become blurred, making a unified mathematical formulation desirable, so as to show up both the similarities and the fundamental differences between quantum and classical systems. This paper serves this purpose, with explicit formulations and a number of examples in the form of superconducting circuit systems. We introduce three classes of physical systems with finite degrees of freedom: classical, standard quantum, and mixed quantum, and present a unified Hilbert space treatment of all three types of system. We consider the classical/quantum divide and the relationship between standard quantum and mixed quantum systems, illustrating the latter with a derivation of a superselection rule in superconducting systems.  相似文献   

4.
In a recent paper, a “distance” function, , was defined which measures the distance between pure classical and quantum systems. In this work, we present a new definition of a “distance”, D, which measures the distance between either pure or impure classical and quantum states. We also compare the new distance formula with the previous formula, when the latter is applicable. To illustrate these distances, we have used 2 × 2 matrix examples and two-dimensional vectors for simplicity and clarity. Several specific examples are calculated.  相似文献   

5.
We discuss the Lindblad equation for the density matrix where the dissipation is linear in the position operator. We consider a potential which is a bounded perturbation of the harmonic oscillator. We show that the perturbation of the potential leads to an analytic perturbation of the Wigner distribution. Then the Wigner distribution of the quantum dissipative system tends (uniformly in time) to the classical phase space distribution of the classical dissipative system (if the initial distribution converges when 0).  相似文献   

6.
Long time asymptotic properties of a class of environmentally induced dynamical semigroups on arbitrary von Neumann algebras are discussed. Such a semigroup selects observables, called effective observables, which are immune to the process of decoherence and so evolve in a reversible automorphic way. In particular, it is shown that effective observables of the quantum system in the thermodynamic limit, subjected to a specific interaction with another quantum system, obey classical dynamics.This work was supported by the KBN research grant no 5P03B 081 21  相似文献   

7.
We propose a new dynamical reflection algebra, distinct from the previous dynamical boundary algebra and semi-dynamical reflection algebra. The associated Yang?CBaxter equations, coactions, fusions, and commuting traces are derived. Explicit examples are given and quantum integrable Hamiltonians are constructed. They exhibit features similar to the Ruijsenaars?CSchneider Hamiltonians.  相似文献   

8.
In the framework of event-enhanced quantum theory the dynamical equation for the reduced density matrix of a quantum system interacting with a continuous classical system is derived. The asymptotic behavior of the corresponding dynamical semigroup is discussed. The example of a quantum–classical coupling on Lobatchevski space is presented.  相似文献   

9.
We consider ground states in relatively bounded quantum perturbations of classical lattice models. We prove general results about such perturbations (existence of the spectral gap, exponential decay of truncated correlations, analyticity of the ground state), and also prove that in particular the AKLT model belongs to this class if viewed on a large enough length scale. This immediately implies a general perturbation theory about this model. On leave from Institute for Information Transmission Problems, Moscow The author is an Irish Research Council for Science, Engineering and Technology Postdoctoral Fellow  相似文献   

10.
The definition of ‘classical state’ from (Aerts in K. Engesser, D. Gabbay and D. Lehmann (Eds.), Handbook of Quantum Logic and Quantum Structures. Elsevier, Amsterdam, 2009), used e.g. in Aerts et al. (http://arxiv.org/abs/quant-ph/0503083, 2010) to prove a decomposition theorem internally in the language of State Property Systems, presupposes as an additional datum an orthocomplementation on the property lattice of a physical system. In this paper we argue on the basis of the (ε,d)-model on the Poincaré sphere that a notion of topologicity for states can be seen as an alternative (operationally foundable) classicality notion in the absence of an orthocomplementation, and compare it to the known and operationally founded concept of classicality.  相似文献   

11.
The N-qubit system characterized by an effective spin \(S = 2^{N - 1} - {1/2}\) is carried out in the representation of two coupled harmonic oscillators. It is shown that quantum computing results obtained with spinor algebra can be obtained also using the algebra of two coupled harmonic oscillators which is a convenient formalism, especially in the case of large number of qubits. In this formalism the non-abelian and abelian groups of the order of 16 related to one- and two-qubit systems were found. The structure of Cayley tables of those groups is different due to different commutation (anticommutation) relations for operators forming each group.  相似文献   

12.
We generalize the definition of quantum Anosov properties and the related Lyapunov exponents to the case of quantum systems driven by a classical flow, i.e. skew-product systems. We show that the skew Anosov properties can be interpreted as regular Anosov properties in an enlarged Hilbert space, in the framework of a generalized Floquet theory. This extension allows us to describe the hyperbolicity properties of almost-periodic quantum parametric oscillators and we show that their upper Lyapunov exponents are positive and equal to the Lyapunov exponent of the corresponding classical parametric oscillators. As second example, we show that the configurational quantum cat system satisfies quantum Anosov properties.  相似文献   

13.
We give a review of some works where it is shown that certain quantum-like features are exhibited by classical systems. Two kinds of problems are considered. The first one concerns the specific heat of crystals (the so called Fermi–Pasta–Ulam problem), where a glassy behavior is observed, and the energy distribution is found to be of Planck-like type. The second kind of problems concerns the self-interaction of a charged particle with the electromagnetic field, where an analog of the tunnel effect is proven to exist, and moreover some nonlocal effects are exhibited, leading to a natural hidden variable theory which violates Bell's inequalities.  相似文献   

14.
The thermodynamic behavior is analyzed of a single classical charged particle in thermal equilibrium with classical electromagnetic thermal radiation, while electrostatically bound by a fixed charge distribution of opposite sign. A quasistatic displacement of this system in an applied electrostatic potential is investigated. Treating the system nonrelativistically, the change in internal energy, the work done, and the change in caloric entropy are all shown to be expressible in terms of averages involving the distribution of the position coordinates alone. A convenient representation for the probability distribution is shown to be the ensemble average of the absolute square value of an expansion over the eigenstates of a Schrödinger-like equation, since the heat flow is shown to vanish for each hypothetical state. Subject to key assumptions highlighted here, the demand that the entropy be a function of state results in statistical averages in agreement with the form in quantum statistical mechanics. Examining the very low and very high temperature situations yields Planck's and Boltzmann's constants. The blackbody radiation spectrum is then deduced. From the viewpoint of the theory explored here, the method in quantum statistical mechanics of statistically counting the states at thermal equilibrium by using the energy eigenvalue structure, is simply a convenient counting scheme, rather than actually representing averages involving physically discrete energy states.  相似文献   

15.
A mathematical construction of a Markov–Feller process associated with a completely positive coupling between classical and quantum systems is proposed. The example of the free classical particle on the Lobatchevski space Q interacting with the quantum system characterized by coherent states on Q is considered.  相似文献   

16.
We describe p-mechanical (Kisil, V. V. (1996). Journal of Natural Geometry 9(1), 1–14; Kisil, V. V. (1999). Advances in Mathematics 147(1), 35–73; Prezhdo, O. V. and Kisil, V. V. (1997). Physical Review A 56(1), 162–175) brackets that generate quantum (commutator) and classical (Poisson) brackets in corresponding representations of the Heisenberg group. We do not use any kind of semiclassical approximation or limiting procedure for 0  相似文献   

17.
18.
We use the Clifford algebra technique (J. Math. Phys. 43:5782, 2002; J. Math. Phys. 44:4817, 2003), that is nilpotents and projectors which are binomials of the Clifford algebra objects γ a with the property {γ a ,γ b }+=2η ab , for representing quantum gates and quantum algorithms needed in quantum computers in a simple and an elegant way. We identify n-qubits with the spinor representations of the group SO(1,3) for a system of n spinors. Representations are expressed in terms of products of projectors and nilpotents; we pay attention also on the nonrelativistic limit. An algorithm for extracting a particular information out of a general superposition of 2 n qubit states is presented. It reproduces for a particular choice of the initial state the Grover’s algorithm (Proc. 28th Annual ACM Symp. Theory Comput. 212, 1996).  相似文献   

19.
The rules of union and intersection of probabilistic fuzzy sets guided us to construct a related operator algebra. In a Hilbert space, where each fuzzy set is represented by an orthonormal vector, the union and the intersection operators generate a well-defined algebra with a unique representation. PACS NUMBER: 02.10.-v  相似文献   

20.
We show that one can formulate an algebra with lattice ordering so as to contain one quantum and five classical operations as opposed to the standard formulation of the Hilbert space subspace algebra. The standard orthomodular lattice is embeddable into the algebra. To obtain this result we devised algorithms and computer programs for obtaining expressions of all quantum and classical operations within an orthomodular lattice in terms of each other, many of which are presented in the paper. For quantum disjunction and conjunction we prove their associativity in an orthomodular lattice for any triple in which one of the elements commutes with the other two and their distributivity for any triple in which a particular element commutes with the other two. We also prove that the distributivity of symmetric identity holds in Hilbert space, although whether or not it holds in all orthomodular lattices remains an open problem, as it does not fail in any of over 50 million Greechie diagrams we tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号