首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

The cyanate anion (CNO), formed spontaneously within cells from urea and carbamoyl phosphate, usually functions as a biomarker of some diseases such as chronic kidney disease. Therefore, accurate determination of CNO is highly demanded. Herein, a 3-amino-2-naphthoic acid-based “turn-on” fluorescence probe was developed for specific detection of CNO. Upon the addition of sodium cyanate, the weak-fluorescent 3-amino-2-naphthoic acid could react with CNO, which triggered intense emission of green fluorescence. And up to 9-fold fluorescence enhancement was observed. The fluorescence enhancement ratios displayed a good linear relationship with the concentrations of CNO in the range of 0.5–200 μM. The high selectivity and sensitivity for CNO detection were investigated with the detection limit as low as 260 nM. The probe was further successfully applied to determine CNO in real samples such as tap water, human urine and serum samples, which offered a promising approach in practical applications.

Graphical abstract

  相似文献   

2.

A new class of magnetic ionic liquids (MILs) with metal-containing cations was applied in in situ dispersive liquid–liquid microextraction (DLLME) for the extraction of long and short double-stranded DNA. For developing the method, MILs comprised of N-substituted imidazole ligands (with butyl-, benzyl-, or octyl-groups as substituents) coordinated to different metal centers (Ni2+, Mn2+, or Co2+) as cations, and chloride anions were investigated. These water-soluble MILs were reacted with the bis[(trifluoromethyl)sulfonyl]imide anion during the extraction to generate a water-immiscible MIL capable of preconcentrating DNA. The feasibility of combining the extraction methodology with anion-exchange high-performance liquid chromatography with diode array detection (HPLC-DAD) or fluorescence spectroscopy was studied. The method with the Ni2+- and Co2+-based MILs was easily combined with fluorescence spectroscopy and provided a faster and more sensitive method than HPLC-DAD for the determination of DNA. In addition, the method was compared to conventional DLLME using analogous water-immiscible MILs. The developed in situ MIL-DLLME method required only 3 min for DNA extraction and yielded 1.1–1.5 times higher extraction efficiency (EFs) than the conventional MIL-DLLME method. The in situ MIL-DLLME method was also compared to the trihexyl(tetradecyl)phosphonium tris(hexafluorocetylaceto)nickelate(II) MIL, which has been used in previous DNA extraction studies. EFs of 42–99% were obtained using the new generation of MILs, whereas EFs of only 20–38% were achieved with the phosphonium MIL. This new class of MILs is simple and inexpensive to prepare. In addition, the MILs present operational advantages such as easier manipulation in comparison to hydrophobic MILs, which can have high viscosities. These MILs are a promising new class of DNA extraction solvents that can be manipulated using an external magnetic field.

Magnetic ionic liquids with metal-containing cations are applied in in situ dispersive liquid–liquid microextraction for the extraction of long and short double-stranded DNA

  相似文献   

3.

The i-motif is a biologically relevant non-canonical DNA structure formed by cytosine-rich sequences. Despite the importance of the factors affecting the formation/stability of such a structure, like pH, cation type and concentration, no systematic study that simultaneously analysed their effect on the i-motif in vitro has been carried out so far. Therefore, here we report a systematic study that aims to evaluate the effect of these factors, and their possible interaction, on the formation of an i-motif structure. Our results confirm that pH plays the main role in i-motif formation. However, we demonstrate that the effect of the cation concentration on the i-motif is strictly dependent on the pH, while no significant differences are observed among the investigated cation types.

Graphical abstract

  相似文献   

4.
Qu  Fei  Meng  Lingxin  Zi  Yuqiu  You  Jinmao 《Analytical and bioanalytical chemistry》2019,411(28):7431-7440

Alkaline phosphatase (ALP) is an important enzyme that is associated with many human diseases, so the quantitative detection of ALP is vital from a clinical perspective. Nevertheless, most fluorescent assays for monitoring ALP depend on aggregation-induced quenching (ACQ), single-signal modulation, or a “signal off” mode, which suffer from poor sensitivity, a “false positive” problem, and low signal output. In this work, we utilized the electrostatically driven self-assembly of glutathione-capped gold nanoclusters (GSH-AuNCs, which show aggregation-induced emission, AIE) and amino-modified silicon nanoparticles (SiNPs) to create a hybrid probe (SiNPs@GSH-AuNCs). This nanohybrid probe showed emission from the SiNPs at around 470 nm as well as aggregation-induced emission enhancement (AIEE) of the GSH-AuNCs at 580 nm. The AIEE of the GSH-AuNCs was quenched in the presence of KMnO4, but the AIEE was recovered by adding ascorbic acid as an oxidation–reduction reaction occurred between KMnO4 and the ascorbic acid. The fluorescence of the SiNPs remained constant whether the AIEE was quenched or not, meaning that the fluorescence of the SiNPs could be used as an internal reference. In a typical enzymatic reaction, ascorbic acid 2-phosphate is hydrolyzed by ALP to produce ascorbic acid. Therefore, the hybrid probe was shown to allow the ratiometric detection of ALP, with a linear range of 0.5–10 U L−1 and a limit of detection (LOD) of 0.23 U L−1. Finally, the proposed analytical strategy was successfully applied to detect ALP in human serum samples and to determine the concentration of an ALP inhibitor.

Graphical Abstract

  相似文献   

5.

In this label-free surface-enhanced Raman scattering (SERS) study of genomic DNA, we demonstrate that the cancer-specific DNA methylation pattern translates into specific spectral differences. Thus, DNA extracted from an acute myeloid leukemia (AML) cell line presented a decreased intensity of the 1005 cm−1 band of 5-methylcytosine compared to normal DNA, in line with the well-described hypomethylation of cancer DNA. The unique methylation pattern of cancer DNA also influences the DNA adsorption geometry, resulting in higher adenine SERS intensities for cancer DNA. The possibility of detecting cancer DNA based on its SERS spectrum was validated on peripheral blood genomic DNA samples from n = 17 AML patients and n = 17 control samples, yielding an overall classification of 82% based on the 1005 cm−1 band of 5-methylcytosine. By demonstrating the potential of SERS in assessing the methylation status in the case of real-life DNA samples, the study paves the way for novel methods of diagnosing cancer.

Graphical abstract

  相似文献   

6.

A novel rhodamine–tryptamine conjugate–based fluorescent and chromogenic chemosensor (RTS) for detection of Hg2+ present in water was reported. After gradual addition of Hg2+ in aqueous methanol solution of RTS, a strong orange fluorescence and deep-pink coloration were observed. The probe showed high selectivity towards Hg2+ compared to other competitive metal ions. The 1:1 binding stoichiometry between RTS and Hg2+ was established by Job’s plot analysis and mass spectroscopy. Initial studies showed that the synthesized probe RTS possessed fair non-toxicity and effectively passed through cell walls of model cell systems, viz., human neuroblastoma (SHSY5Y) cells and cervical cells (HeLa) to detect intercellular Hg2+ ions, signifying its utility in biological system. The limit of detection (LOD) was found to be 2.1 nM or 0.42 ppb by fluorescence titration. Additionally, the potential relevance of synthesized chemosensor for detecting Hg2+ ions in environmental water samples has been demonstrated.

  相似文献   

7.

In this work, a straightforward analytical approach based on headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry was developed for the analysis of salivary volatile organic compounds without any prior derivatization step. With a sample volume of 500 μL, optimal conditions were achieved by allowing the sample to equilibrate for 10 min at 50 °C and then extracting the samples for 10 min at the same temperature, using a carboxen/polydimethylsiloxane fibre. The method allowed the simultaneous identification and quantification of 20 compounds in sample headspace, including short-chain fatty acids and their derivatives which are commonly analysed after analyte derivatization. The proof of applicability of the methodology was performed with a case study regarding the analysis of the dynamics of volatile metabolites in saliva of a single subject undergoing 5-day treatment with rifaximin antibiotic. Non-stimulated saliva samples were collected over 3 weeks from a nominally healthy volunteer before, during, and after antibiotic treatment. The variations of some metabolites, known to be produced by the microbiota and by bacteria that are susceptible to antibiotics, suggest that the study of the dynamics of salivary metabolites can be an excellent indirect method for analysing the gut microbiota. This approach is novel from an analytical standpoint, and it encourages further studies combining saliva metabolite profiles and gut microbiota dynamics.

Graphical abstract

  相似文献   

8.

Identification and quantification of microplastics (MP) in environmental samples is crucial for understanding the risk and distribution of MP in the environment. Currently, quantification of MP particles in environmental samples and the comparability of different matrices is a major research topic. Research also focusses on sample preparation, since environmental samples must be free of inorganic and organic matrix components for the MP analysis. Therefore, we would like to propose a new method that allows the comparison of the results of MP analysis from different environmental matrices and gives a MP concentration in mass of MP particles per gram of environmental sample. This is possible by developing and validating an optimized and consistent sample preparation scheme for quantitative analysis of MP particles in environmental model samples in conjunction with quantitative 1H-NMR spectroscopy (qNMR). We evaluated for the first time the effects of different environmental matrices on identification and quantification of polyethylene terephthalate (PET) fibers using the qNMR method. Furthermore, high recovery rates were obtained from spiked environmental model samples (without matrix ~ 90%, sediment ~ 97%, freshwater ~ 94%, aquatic biofilm ~ 95%, and invertebrate matrix ~ 72%), demonstrating the high analytical potential of the method.

Graphical abstract

  相似文献   

9.

Starting from simple graphite flakes, an electrochemical sensor for sunset yellow monitoring is developed by using a very simple and effective strategy. The direct electrochemical reduction of a suspension of exfoliated graphene oxide (GO) onto a glassy carbon electrode (GCE) surface leads to the electrodeposition of electrochemically reduced oxide at the surface, obtaining GCE/ERGO-modified electrodes. They are characterized by cyclic voltammetry (CV) measurements and field emission scanning electron spectroscopy (FE-SEM). The GCE/ERGO electrode has a high electrochemically active surface allowing efficient adsorption of SY. Using differential pulse voltammetry (DPV) technique with only 2 min accumulation, the GCE/ERGO sensor exhibits good performance to SY detection with a good linear calibration for concentration range varying 50–1000 nM (R2 = 0.996) and limit of detection (LOD) estimated to 19.2 nM (equivalent to 8.9 μg L−1). The developed sensor possesses a very high sensitivity of 9 μA/μM while fabricated with only one component. This electrochemical sensor also displays a good reliability with RSD value of 2.13% (n = 7) and excellent reusability (signal response change < 3.5% after 6 measuring/cleaning cycles). The GCE/ERGO demonstrates a successful practical application for determination of sunset yellow in commercial soft drinks.

Graphical abstract

  相似文献   

10.

A fully automated method for the determination of lovastatin in dietary supplements containing red yeast rice has been developed. It uses a sequential injection analysis system combined with solid-phase extraction applying highly selective molecularly imprinted polymer sorbent. A miniaturized column for on-line extraction was prepared by packing 4.5 mg of the sorbent in a 5.0 × 2.5-mm-i.d. cartridge, which was used in the flow manifold. Sequential injection analysis manifold enabled all steps of lovastatin extraction and continuous spectrophotometric detection at 240 nm. A limit of detection of 60 μg g−1, a limit of quantitation of 200 μg g−1, and a linear calibration range of 200–2000 μg g−1 were achieved. Intra-day and inter-day precision values (RSD) were ≤ 6.7% and ≤ 4.9%, respectively, and method recovery values of spiked red yeast rice extracts at 200, 1000, and 2000 μg g−1 concentration levels were 82.9, 95.2, and 87.7%. Our method was used for determination of lovastatin lactone in four dietary supplements containing red yeast rice as a natural source of lovastatin, also known as monacolin K. The extracted samples were subsequently analyzed by the reference UHPLC-MS/MS method. Statistical comparison of results (F test, t test, α = 0.05) obtained by both methods did not reveal significant difference. A substantial advantage of the new automated approach is high sample throughput thanks to the analysis time of 7.5 min, miniaturization via down-scaling the extraction column, and smaller sample and solvent consumption, as well as reduced generation of waste.

  相似文献   

11.
Qu  Qi  Lv  Yaying  Liu  Lingling  Row  Kyung Ho  Zhu  Tao 《Analytical and bioanalytical chemistry》2019,411(28):7489-7498

Hydrophilic and hydrophobic deep eutectic solvents (DESs) as “green” solvents were applied in this study for the microextraction of environmental samples. A series of DESs (five hydrophilic and three hydrophobic) were synthesized and characterized by Fourier transform infrared spectroscopy. Physicochemical property parameters of eight DESs including water solubility, density, conductivity, and freezing point were assessed. Compared with the performance of five hydrophilic DESs in water phase, the three hydrophobic DESs were more suitable for application in dispersive liquid-liquid microextraction for the determination of sulfonamides in water sample. In dispersive liquid-liquid microextraction process, analytical parameters including type and volume of extraction solvent, extraction time, and pH of water sample were investigated. Under optimum conditions, 60 μL of hydrophobic DESs was used for extraction for 2 min in pH = 7.0 sample. The linear ranges were 0.05–5.0 μg/mL for the four sulfonamides with the correlation coefficients in the range of 0.9991–0.9999. The limits of detection were in the range of 0.0005–0.0009 μg/mL and the limits of quantification were in the range of 0.0019–0.0033 μg/mL. The recoveries of the analytes of the proposed method for the spiked samples were 80.17–93.5%, with the relative standard deviation less than 6.31%. The results indicated that three hydrophobic DESs showed commendable performance for extraction of sulfonamides, and hydrophobic DES-based microextraction method was successfully applied for monitoring sulfonamides in water samples.

Graphical abstract

  相似文献   

12.
Wang  Yu  Dzakah  Emmanuel Enoch  Kang  Ye  Cai  Yanxue  Wu  Peidian  Cui  Yue  Huang  Youzhen  He  Xiaowei 《Analytical and bioanalytical chemistry》2019,411(21):5499-5507

Anti-Müllerian hormone (AMH) is a biomarker for the assessment of female fertility. The accurate measurement of the concentration of AMH is relevant for the success of assisted reproductive therapies and diagnosis of clinical cases. In this study, we show that cytokines such as fetal liver tyrosine kinase 3 ligand (Flt3L), CC subtype chemokine ligand 20 (CCL20), granulocyte–macrophage colony-stimulating factor (GM-CSF), and β2-microglobulin (β2M) significantly enhance the immune response against AMH. Two anti-AMH monoclonal antibodies (mAbs) with high affinity were selected by biolayer interferometry (BLI) technology for application in a fully automated magnetic chemiluminescence immunoassay (CLIA). This robust and rapid assay can efficiently detect AMH in the range of 0.125~20 ng mL−1 with a detection limit of 0.099 ng mL−1. This immunoassay showed high specificity with no cross-reaction with structurally related proteins and some of the other members of the TGF-β super family, such as inhibin A, activin A, follicle-stimulating hormone, and luteinizing hormone. The average recovery rates of three different batches were 100.19%, 102.72%, and 103.59%, respectively, with coefficients of variation of less than 12%. The developed assay was applied in the detection of AMH in 69 serum samples from randomly selected patients. Our data showed a high correlation with those obtained using commercially available ELISA kits (correlation coefficient, 0.9831). Hence, we suggest that this immunoassay could find application in the development of POCT for the diagnosis of AMH in clinical samples.

Graphical abstract

  相似文献   

13.

One of the main challenges in large-scale applications of molecularly imprinted polymers (MIPs) is the significant amount of template needed in polymer preparation. A new strategy based on room-temperature ionic liquids (RTILs) was suggested to solve this problem by reducing the amount of template in the polymerization recipe. The MIP was synthesized with a mixture of dimethyl sulfoxide and RTIL (1-butyl-3-methylimidazolium tetrafluoroborate) as porogen, in which chlorogenic acid (CGA) was used as template, 4-vinylpyridine (4-VP) as functional monomer, and ethylene glycol dimethacrylate (EDMA) as cross-linker. The influence of polymerization variables, including CGA concentrations, and the ratio of 4-VP to EDMA on imprinting effect were investigated comprehensively. Moreover, the properties involving the column permeability, the number of binding sites, and the polymer morphology of the CGA-MIP monoliths were studied thoroughly. The MIP monolith had an excellent column permeability (1.53 × 10−13 m2) and allowed an ultra-fast on-line SPE, which dramatically shortens the separation time (< 10 min) and improves the separation efficiency. At high flow velocity (5.0 mL min−1), 50 μL of the extract from Eucommia ulmoides leaves can be loaded directly on the CGA-MIP monoliths and CGA with high purity can be obtained with a recovery of 89.01 ± 0.05%. As a conclusion, the resulting RTIL-induced approach of preparing MIP may be an effective tool in fabricating MIP in a low-cost way.

  相似文献   

14.
He  Yu  Wang  Shuo  Wang  Junping 《Analytical and bioanalytical chemistry》2019,411(28):7481-7487

Folic acid (FA) is an essential vitamin in humans, and thus, rapid, accurate, and sensitive methods for its quantification in different biological samples are needed. This work describes a novel, simple, and effective dual-emission fluorescence nanoprobe for FA detection and quantification. The probe was covalently linked to amino-modified orange quantum dots (QDs) and carboxyl-modified blue graphene quantum dots (GQDs). The resulting material exhibited two emission peaks at 401 and 605 nm upon excitation at 310 nm. The probe had good selectivity and sensitivity toward FA with an exceptionally low detection limit (LOD = 0.09 nM). This probe was effectively used to quantify FA in animal serum samples. The method has potential utility for FA analysis in different types of biological samples.

Graphical abstract

  相似文献   

15.

A simple method for the simultaneous quantification of meropenem and the recently approved β-lactamase inhibitor, vaborbactam, in human plasma and renal replacement therapy effluent (RRTE) was developed and validated. This antibiotic combination protects a primary β-lactam, meropenem, with a new β-lactamase inhibitor, and expands the limited options for treatment of multidrug-resistant Gram-negative infections. Meropenem, vaborbactam, and the internal standards [2H6]-meropenem and sulbactam in plasma and RRTE were processed using acetonitrile followed by a chromatographic separation on a Poroshell HPH-C18 column with a gradient elution of the mobile phases and monitored using mass spectrometry detection. The calibration range was 0.05 to 100 μg mL−1 for both meropenem and vaborbactam. The intra-day and inter-day precision and accuracy were less than 15% for both meropenem and vaborbactam and the recovery from plasma was 96% for both meropenem and vaborbactam and the recovery from RRTE was 93% and 103% for meropenem and vaborbactam, respectively. This methodology was successfully applied to an ex vivo characterisation study of the effects of renal replacement therapy modalities on the pharmacokinetics of meropenem and vaborbactam (Antimicrob Agents Chemother 62(10), 2018).

Graphical abstract

  相似文献   

16.

A biomass nitrogen and sulfur codoped carbon dots (NS-Cdots) was prepared by a simple and clean hydrothermal method using leek, and was employed as efficient fluorescent probes for sensitive detection of organophosphorus pesticides (OPs). The leek-derived NS-Cdots emitted blue fluorescence, but was quenched by H2O2. Due to acetylcholinesterase/choline oxidase–based cascade enzymatic reaction that produces H2O2 and the inhibition effect of OPs on acetylcholinesterase activity, a NS-Cdots-based fluorescence “off-on” method to detect OPs-dichlorvos (DDVP) was developed. More sensitivity and wider linear detection range were achieved from 1.0 × 10−9 to 1.0 × 10−3 M (limit of detection = 5.0 × 10−10 M). This developed method was applied to the detection of DDVP in Chinese cabbage successfully. The average recoveries were in the range of 96.0~104.0% with a relative standard deviation of less than 3.3%. In addition, the NS-Cdots fluorescent probes were also employed successfully in multicolor imaging of living cells, manifesting that the NS-Cdots fluorescent probes have great application potential in agricultural and biomedical fields.

Graphical Abstract

  相似文献   

17.

A quantitative method for the determination of per- and polyfluoroalkyl substances (PFAS) using liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed and applied to aqueous wastewater, surface water, and drinking water samples. Fifty-three PFAS from 14 compound classes (including many contaminants of emerging concern) were measured using a single analytical method. After solid-phase extraction using weak anion exchange cartridges, method detection limits in water ranged from 0.28 to 18 ng/L and method quantitation limits ranged from 0.35 to 26 ng/L. Method accuracy ranged from 70 to 127% for 49 of the 53 extracted PFAS, with the remaining four between 66 and 138%. Method precision ranged from 2 to 28% RSD, with 49 out of the 53 PFAS being below < 20%. In addition to quantifying > 50 PFAS, many of which are currently unregulated in the environment and not included in typical analytical lists, this method has efficiency advantages over other similar methods as it utilizes a single chromatographic separation with a shorter runtime (14 min), while maintaining method accuracy and stability and the separation of branched and linear PFAS isomers. The method was applied to wastewater influent and effluent; surface water from a river, wetland, and lake; and drinking water samples to survey PFAS contamination in Australian aqueous matrices. The compound classes FTCAs, FOSAAs, PFPAs, and diPAPs were detected for the first time in Australian WWTPs and the method was used to quantify PFAS concentrations from 0.60 to 193 ng/L. The range of compound classes detected and different PFAS signatures between sample locations demonstrate the need for expanded quantitation lists when investigating PFAS, especially newer classes in aqueous environmental samples.

Graphical abstract

  相似文献   

18.
Shen  Xing  Zhang  Haiting  He  Xiaolong  Shi  Honglan  Stephan  Chady  Jiang  Hua  Wan  Cuihong  Eichholz  Todd 《Analytical and bioanalytical chemistry》2019,411(21):5531-5543

Single cell-inductively coupled plasma-mass spectrometry (SC-ICP-MS) is an emerging technology. In this work, we have developed a novel SC-ICP-MS method to quantify metal ions in individual cells of a toxic cyanobacterial species, Microcystis aeruginosa (M. aeruginosa), without complicated post-dosing sample preparation, and applied this method to study the treatment effectiveness of copper-based algaecides (cupric sulfate and EarthTec®) on the toxic algae M. aeruginosa. The developed SC-ICP-MS method uses new intrinsic metal element magnesium to determine real transport efficiency and cell concentration. The cell viability and microcystin-LR release by algaecide treatment were studied by flow cytometry and ultra-fast liquid chromatography-tandem mass spectrometry, respectively. The results showed that this novel method was very rapid, highly sensitive (detection limits of intracellular copper and magnesium were 65 ag/cell and 98 ag/cell, respectively), and reproducible (relative standard deviation within 12%). The algaecide effectiveness study further demonstrated that copper in the forms of cupric sulfate and copper-based algaecide EarthTec® successfully diminished M. aeruginosa populations. The higher the copper concentration used to treat the cells, the faster the speeds of copper uptake and cell lysis in the copper concentrations ranged from 0 to 200 μg/L of copper-based algaecide. The cells exhibit obvious heterogeneity in copper uptake. The result suggests that M. aeruginosa cells uptake and cumulate copper followed by cellular lysis and microcystin-LR release. These novel results indicated that though the copper-based algaecides could control this type of harmful algal bloom, further treatment to remove the released algal toxin from the treated water would be needed.

Graphical abstract

  相似文献   

19.

In the current study, we reported a novel label-free and facile colorimetric approach for the sequential detection of copper ion (Cu2+), l-arginine (Arg), and l-cysteine (Cys) in the H2O (10.0 mmol L−1 HEPES buffer solution, pH 7.0) using Reactive Blue 4 (RB4). First, the presence of Cu2+ led to a naked-eye color and spectral changes according to the binding site-signaling subunit approach. Then, the RB4-Cu2+ complex was successfully applied for Cys and Arg through different recognition pathways. The optical signals for Arg were observed due to its association involving the amino group, as well as the participation of the carboxylate group in a bidentate form to the complex, while selective behavior for Cys was explained by a metal displacement mechanism. The limits of detection for Cu2+, Arg, and Cys were calculated to be 1.96, 1.06, and 1.33 μmol L−1, respectively. It could also be employed for the determination of three analytes in environmental, biological, and pharmaceutical samples. Importantly, the test strips based on RB4-Cu2+ complex could be used as a solid-state sensor for the detection of Cys and Arg. In addition, NAND and IMPLICATION molecular logic gates were obtained by using chemical inputs and UV-Vis absorbance signal as the output.

Graphical Abstract

  相似文献   

20.

Graphite electrodes were modified with triangular (AuNTrs) or spherical (AuNPs) nanoparticles and further modified with fructose dehydrogenase (FDH). The present study reports the effect of the shape of these nanoparticles (NPs) on the catalytic current of immobilized FDH pointing out the different contributions on the mass transfer–limited and kinetically limited currents. The influence of the shape of the NPs on the mass transfer–limited and the kinetically limited current has been proved by using two different methods: a rotating disk electrode (RDE) and an electrode mounted in a wall jet flow-through electrochemical cell attached to a flow system. The advantages of using the wall jet flow system compared with the RDE system for kinetic investigations are as follows: no need to account for substrate consumption, especially in the case of desorption of enzyme, and studies of product-inhibited enzymes. The comparison reveals that virtually identical results can be obtained using either of the two techniques. The heterogeneous electron transfer (ET) rate constants (kS) were found to be 3.8 ± 0.3 s−1 and 0.9 ± 0.1 s−1, for triangular and spherical NPs, respectively. The improvement observed for the electrode modified with AuNTrs suggests a more effective enzyme-NP interaction, which can allocate a higher number of enzyme molecules on the electrode surface.

The shape of gold nanoparticles has a crucial effect on the catalytic current related to the oxidation of D-(-)-fructose to 5-keto-D-(-)-fructose occurring at the FDH-modified electrode surface. In particular, AuNTrs have a higher effect compared with the spherical one.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号