首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Chronic ethanol exposure has been shown to result in changes in neuronal cyto-architecture such as aberrant sprouting and alteration of neurite outgrowth. In PC12 cells, chronic ethanol treatment produces an increase in Nerve Growth Factor (NGF)-induced neurite outgrowth that appears to require the epsilon, but not delta, isoform of Protein Kinase C (PKC). Neurites contain a core of microtubules that are formed from polymerization of free-tubulin. Therefore, it would be expected that an increase in neurite outgrowth would correlate with an increase in microtubule content. We examined the effect of chronic ethanol exposure on microtubule content in PC12 cells and the role of PKC epsilon and delta in ethanol's effect on microtubule levels.  相似文献   

2.
3.
4.

Background  

SNAP-25 is a synaptic protein known to be involved in exocytosis of synaptic vesicles in neurons and of large dense-core vesicles in neuroendocrine cells. Its role in exocytosis has been studied in SNAP-25 knockout mice, in lysed synaptosomes lacking functional SNAP-25 and in cells after treatment with botulinum toxins A or E that specifically cleave SNAP-25. These studies have shown that SNAP-25 appears to be required for most but not all evoked secretion. In order to further study the role of SNAP-25 in catecholamine secretion from PC12 cells we have used the recently developed technique of RNA interference to generate PC12 cell lines with virtually undetectable levels of SNAP-25. RNA interference is the sequence-specific silencing or knockdown of gene expression triggered by the introduction of double-stranded RNA into a cell. RNA interference can be elicited in mammalian cells in a number of ways, one of which is by the expression of small hairpin RNAs from a transfected plasmid. Selection of stably transfected cell lines expressing a small hairpin RNA allows one-time characterization of the degree and specificity of gene silencing and affords a continuing source of well-characterized knockdown cells for experimentation.  相似文献   

5.
6.

Background  

Central nervous system axons lack a robust regenerative response following spinal cord injury (SCI) and regeneration is usually abortive. Supraspinal pathways, which are the most commonly studied for their regenerative potential, demonstrate a limited regenerative ability. On the other hand, propriospinal (PS) neurons, with axons intrinsic to the spinal cord, have shown a greater regenerative response than their supraspinal counterparts, but remain relatively understudied in regards to spinal cord injury.  相似文献   

7.
Here, a study on Cisplatin (cis-Diammineplatinum(II) dichloride – CDDP) insertion within multiwalled carbon nanotubes (MWCNTs) via capillary forces is presented. The employment of MWCNTs as anticancer drug nano-vectors is suggested by the harmful side effects occurring after the chemotherapeutic treatment due to the lack of selectivity of the chemotherapeutic agents in general. Cisplatin is widely used as a powerful cell-killer but without any cell-specificity. Via high resolution transmission electron microscopy (HR-TEM) CDDP clusters inserted into MWCNTs were detected. Energy dispersive X-ray spectroscopy (EDX) revealed the signal of CDDP constitutive elements. Raman Spectroscopy and InfraRed analysis excluded the presence of the drug on the tubes outer shell. Thermogravimetric (TGA) study was exploited to evaluate the purity of the material and to calculate the amount of CDDP incorporated into the tubes. A time dependent release of CDDP indicated that the outflow took place in the range between 12 and 48 h. After this time ~95% of the drug previously embedded was discharged.  相似文献   

8.

Background  

Axons within the mature mammalian central nervous system fail to regenerate following injury, usually resulting in long-lasting motor and sensory deficits. Studies involving transplantation of adult neurons into white matter implicate glial scar-associated factors in regeneration failure. However, these studies cannot distinguish between the effects of these factors and disruption of the spatial organization of cells and molecular factors (disrupted geometry). Since white matter can support or inhibit neurite growth depending on the geometry of the fiber tract, the present study sought to determine whether disrupted geometry is sufficient to inhibit neurite growth.  相似文献   

9.

Background  

Adjuvants are known to significantly enhance vaccine efficacy. However, commercial adjuvants often have limited use because of toxicity in humans. The objective of this study was to determine the comparative effectiveness of a diterpene alcohol, phyto l and its hydrogenated derivative PHIS-01, relative to incomplete Freund's adjuvant (IFA), a commonly used adjuvant in augmenting protective immunity in mice against E. coli and S. aureus, and in terms of inflammatory cytokines.  相似文献   

10.

Background  

In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors.  相似文献   

11.

Background  

The blood brain barrier (BBB) is the first line of defence of the central nervous system (CNS) against circulating pathogens, such as HIV. The cytotoxic HIV protein, gp120, damages endothelial cells of the BBB, thereby compromising its integrity, which may lead to migration of HIV-infected cells into the brain. Fibroblast growth factor 2 (FGF2), produced primarily by astrocytes, promotes endothelial cell fitness and angiogenesis. We hypothesized that treatment of human umbilical vein endothelial cells (HUVEC) with FGF2 would protect the cells from gp120-mediated toxicity via endothelial cell survival signalling.  相似文献   

12.

Background  

The neuroprotective effect of xenon has been demonstrated for glutamatergic neurons. In the present study it is investigated if dopaminergic neurons, i.e. nerve-growth-factor differentiated PC-12 cells, are protected as well against hypoxia-induced cell damage in the presence of xenon.  相似文献   

13.
14.

Background  

Spontaneous repair is limited after CNS injury or degeneration because neurogenesis and axonal regrowth rarely occur in the adult brain. As a result, cell transplantation has raised much interest as potential treatment for patients with CNS lesions. Several types of cells have been considered as candidates for such cell transplantation and replacement therapies. Foetal brain tissue has already been shown to have significant effects in patients with Parkinson's disease. Clinical use of the foetal brain tissue is, however, limited by ethical and technical problems as it requires high numbers of grafted foetal cells and immunosuppression. Alternatively, several reports suggested that mesenchymal stem cells, isolated from adult bone marrow, are multipotent cells and could be used in autograft approach for replacement therapies.  相似文献   

15.
Recent evidence suggests that some nanomaterials, which are widely used in many fields, have health effects. In order to investigate the cytotoxicity induced by nanosized copper particles (nano-Cu), PC12 cells, which were widely used as an in vitro model for the neuron research, were treated with different concentrations (0, 1, 10, 30, and 100???g/mL) of nano-Cu. The cell viability was determined by measurement of the reduction product of 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT). The oxidative stress induced by nano-Cu and its possible mechanism were studied in relation to the generation of reactive oxygen species (ROS) and the cellular activity of superoxide dismutase (SOD). Results showed that incubation of PC12 cells with increasing concentrations of nano-Cu induced a decrease of cell viability in a concentration- and time-dependent manner. In addition, flow cytometry assay using Annexin V-FITC/PI staining was used to investigate the mode of nano-Cu-induced cell death and quantified the percentage of apoptotic cells. Results showed that nano-Cu induced the significant apoptosis in PC12 cells. Meanwhile, intracellular accumulation of ROS was increased with the increased concentrations of nano-Cu and it was associated with decreased SOD activity, which was probably due to protect effects against the oxidative stress in PC12 cells. Results suggested that both excessive intracellular ROS and decreased SOD contributed to nano-Cu-induced cytotoxicity. In other words, the increasing of oxidative stress was a key mechanism in PC12 apoptosis induced by nano-Cu.  相似文献   

16.

Background  

It has recently been demonstrated that the fate of adult cells is not restricted to their tissues of origin. In particular, it has been shown that bone marrow stem cells can give rise to cells of different tissues, including neural cells, hepatocytes and myocytes, expanding their differentiation potential.  相似文献   

17.

Background  

Immunity against the T cell receptor (TCR) is considered to play a central role in the regulation of experimental allergic encephalomyelitis (EAE), a model system of autoimmune disease characterized by a restricted usage of TCR genes. Methods of specific vaccination against the TCR of pathogenetic T cells have included attenuated T cells and synthetic peptides from the sequence of the TCR. These approaches have led to the concept that anti-idiotypic immunity against antigenic sites of the TCR, which are a key regulatory element in this disease.  相似文献   

18.

Background  

Retinal ganglion cells (RGCs) are responsible for the transmission of visual signals to the brain. Progressive death of RGCs occurs in glaucoma and several other retinal diseases, which can lead to visual impairment and blindness. Pigment epithelium-derived factor (PEDF) is a potent antiangiogenic, neurotrophic and neuroprotective protein that can protect neurons from a variety of pathologic insults. We tested the effects of PEDF on the survival of cultured adult rat RGCs in the presence of glaucoma-like insults, including cytotoxicity induced by glutamate or withdrawal of trophic factors.  相似文献   

19.
20.

Background  

The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号