首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As model compounds for nanosize carbon clusters, the phonon dispersion curves of polyacene are constructed based on density functional theory calculations for [n]oligoacenes (n=2-5, 10, and 15). Complete vibrational assignments are given for the observed Fourier-transform infrared and Raman spectra of [n]oligoacenes (n=2-5). Raman intensity distributions by the 1064-nm excitation are well reproduced by the polarizability-approximation calculations for naphthalene and anthracene, whereas several bands of naphthacene and pentacene at 1700-1100 cm(-1) are calculated to be enhanced by the resonance Raman effect. It is found from vibronic calculations that the coupled a(g) modes between the Kekulé deformation and joint CC stretching give rise to the Raman enhancements of the Franck-Condon type, and that the b(3g) mode corresponding to the graphite G mode is enhanced by vibronic coupling between the (1)L(a)((1)B(1u)) and (1)B(b)((1)B(2u)) states. The phonon dispersion curves of polyacene provide a uniform foundation for understanding molecular vibrations of the oligoacenes in terms of the phase difference. The mode correlated with the defect-sensitive D mode of the bulk carbon networks is also found for the present one-dimensional system.  相似文献   

2.
We report the results of a theoretical study on the behavior of the structural parameters, electronic band structure, vibrational and thermodynamical properties of transition metal nitride, CdN in the rocksalt (RS), NiAs (P63/mmc) and CuS (B18) phases at ambient pressure. The calculations are based on the ab-initio plane-wave pseudopotential density functional theory (DFT), within the generalized gradient approximations (GGA) for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies, phonon densities of states and thermodynamical properties. We discuss the contribution of the phonons in the dynamical stability of CdN and detailed analysis of thermodynamical properties of specific heat and Debye temperature for CdN in all considered structures.  相似文献   

3.
With a simple method-the reduced matrix method, we simplified the calculation of the phonon vibrational frequencies according to SWNTs structure and their phonon symmetric property and got the dispersion properties of all SWNTs at Gamma point in Brillouin zone, whose diameters lie between 0.6 and 2.5 nm. The calculating time is shrunk about 2-4 orders. A series of the dependent relationships between the diameters of SWNTs and the frequencies of Raman and IR active modes are given. Several fine structures including "glazed tile" structures in omega approximately d figures are found, which might predict a certain macro-quantum phenomenon of the phonons in SWNTs.  相似文献   

4.
Synchrotron‐based nuclear resonance vibrational spectroscopy (NRVS) using the Mössbauer isotope 161Dy has been employed for the first time to study the vibrational properties of a single‐molecule magnet (SMM) incorporating DyIII, namely [Dy(Cy3PO)2(H2O)5]Br3?2 (Cy3PO)?2 H2O ?2 EtOH. The experimental partial phonon density of states (pDOS), which includes all vibrational modes involving a displacement of the DyIII ion, was reproduced by means of simulations using density functional theory (DFT), enabling the assignment of all intramolecular vibrational modes. This study proves that 161Dy NRVS is a powerful experimental tool with significant potential to help to clarify the role of phonons in SMMs.  相似文献   

5.
Equilibrium molecular dynamics (MD) simulations have been performed in both the NVT and NPT ensembles to study the structural and dynamical properties of fully occupied methane clathrate hydrates at 50, 125, and 200 K. Five atomistic potential models were used for water, ranging from fully flexible to rigid polarizable and nonpolarizable. A flexible and a rigid model were utilized for methane. The phonon densities of states were evaluated and the localized rattling modes for the methane molecules were found to couple to the acoustic phonons of the host lattice. The calculated methane density of states was found to be in reasonable agreement with available experimental data.  相似文献   

6.
Structural, elastic and dynamical properties of the zinc-blende and nickel arsenide structures of BeS have been studied by employing an ab initio pseudopotential method and a linear response approach, within the local density approximation. Our results compare quite well with the available experimental data. To the best of our knowledge, the elastic and lattice dynamical properties for BeS in the nickel arsenide phase are reported in the present study for the first time. Differences in the phonon spectra and density of states both in the acoustic and optical ranges between the two phases of interest are investigated. The linear and quadratic pressure coefficients of phonon frequencies at the center of the Brillouin zone are determined from the pressure dependence of vibration modes.  相似文献   

7.
The relaxation of vibrational energy in the H and D stretch modes has been studied on the graphene surface using ab initio calculations. The dissipation of the vibrational energy stored in the stretching modes proceeds through vibration-phonon coupling, while the dissipation through electronic excitations makes only minor contributions. Recently, we reported the fast relaxation of the H stretch energy on graphene [S. Sakong and P. Kratzer, J. Chem. Phys. 133, 054505 (2010)]. Interestingly, we predict the lifetime of the D stretch to be markedly longer compared to the relaxation of the H stretch. This is unexpected since the vibrational amplitudes at carbon atoms in the joint C-D vibrational modes are larger than in the joint C-H modes, due to the mass ratio m(D)/m(C) > m(H)/m(C). However, the vibrational relaxation rate for the D stretch is smaller than for the H stretch, because the energy is dissipated to an acoustic phonon of graphene in the case of C-D rather than an optical phonon as is the case in C-H, and hence, the corresponding phonon density of states is lower in the C-D case. To rationalize our findings, we propose a general scheme for estimating vibrational lifetimes of adsorbates based on four factors: the density of states of the phonons that mediates the transitions, the vibration-phonon coupling strength, the anharmonic coupling between local modes, and the number of quanta involved in the transitions. Mainly the first two of these factors are responsible for the differences in the lifetimes of the C-H and C-D stretches. The possible role of the other factors is illustrated in the context of vibrational lifetimes in other recently studied systems.  相似文献   

8.
The interplay of electronic and nuclear degrees of freedom in semiconductor hybrid organic–inorganic perovskites determines many of their fundamental photophysical properties. For instance, charge carriers are dressed with phonons, that is, form polarons, and combination modes composed of strongly mixed localized vibrations and delocalized phonons can provide pathways for electronic energy relaxation and dissipation. Mixing of the different types of nuclear motion in vibrational combination modes requires their strong coupling. The direct measurement of coupling between the high‐frequency N?H stretch modes of the organic methylammonium and formamidinium ions and low‐frequency Pb?I phonon modes of the inorganic sub‐lattice in hybrid organic–inorganic perovskites is presented. The results reveal direct and substantial coupling between the non‐covalently interacting organic and inorganic sub‐lattices.  相似文献   

9.
The relaxation and vibrational properties of both Al clusters and the (111) surface of a copper sub-strate were studied using the interatomic interaction potentials obtained in a tight-binding approximation. The presence of small aluminum clusters led to modification of the vibrational states of the substrate, a shift of the Rayleigh mode, and excitation of new Z-polarized modes. Hybridized modes localized on the cluster adatoms and the neighboring atoms of the substrate were found in the phonon spectrum. The localized dipole-active modes of the cluster and their strong hybridization with vibrations of the substrate points to desorption stability of the tri- and heptaatomic clusters.  相似文献   

10.
We report a Raman characterization of the α borophene polymorph by scanning tunneling microscopy combined with tip-enhanced Raman spectroscopy. A series of Raman peaks were discovered, which can be well related with the phonon modes calculated based on an asymmetric buckled α structure. The unusual enhancement of high-frequency Raman peaks in TERS spectra of α borophene is found and associated with its unique buckling when landed on the Ag(111) surface. Our paper demonstrates the advantages of TERS, namely high spatial resolution and selective enhancement rule, in studying the local vibrational properties of materials in nanoscale.  相似文献   

11.
Beryllium sulfide (BeS) in different forms from molecule, bulk, monolayer (h-BeS), to the single-walled nanotube obtained by wrapping the h-BeS monolayer along the (n,0) hexagonal lattice vector for n varying from n = 6 to 64, has been examined. Density functional theory (DFT) with an all electron basis set and the hybrid DFT/B3LYP level have been applied to compute energetic and geometrical, electronic and vibrational, elastic and piezoelectric properties, where the trend towards the hexagonal monolayer (h-BeS) in the limit of large tube radius is obtained. The vibrational properties including Raman spectra and polarizabilities are evaluated via the Coupled Perturbed Hartree–Fock and Kohn–Sham (CPHF/KS) computational schemes. For the first time, the IR vibrational modes at higher tube diameter and their convergence to the h-BeS monolayer limit are reported where the vibrational and electronic contributions to both perpendicular and parallel components of polarizability tensor are additionally discussed. For the (n,0) BeS nanotube family, three ranges of IR active phonon modes are determined. The first one located in the 0–300 cm−1frequency domain, goes regularly to zero when the tube diameter increases. Both the second (300–400 cm−1) and the third (700–800 cm−1) ones tend smoothly with different slope, towards the two optical vibrational modes of the h-BeS layer. These theoretical models can be extended to investigate further issues, such as the effect caused by the addition of a dopant, the influence of the substitutional fraction of nanotube atoms and the interaction of molecules outside and/or inside of the nanotube.  相似文献   

12.
Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS2‐based single‐wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra‐red and Raman active modes in achiral WS2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone‐folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
Based on the density functional theory, we obtain the optimum geometry of carbon chain inside a carbon nanotube. The phonon spectrum and specific heat of such a chain and nanotube hybrid system are calculated in terms of lattice dynamics theory. Some new phonon branches that have been obtained come from the coupling vibrations of the nanotube and the chain. The bending and stretching modes of the chain appear at about 520 cm(-1)and 1935 cm(-1) at Gamma point, respectively. It is found that the softening of G modes results mainly from the chain induced variations in the bond length on nanotube, independent of van der Waals interaction, while the stiffening of radial breathing mode is developed by the competition between the two factors. In the low-frequency region, the vibrational density of states are very different from that of the bare nanotube. Its specific heat implies the underlying quantized phonon structures and much large thermal conductivity in the hybrid system. In addition, the chain-length dependent vibration modes are calculated, from which it is expected that a finite chain of about 14 carbon atoms in the nanotube may produce the experimental Raman peak at about 1850 cm(-1).  相似文献   

14.
The phonon spectra and thermal properties of the hexagonal MoS2 are investigated by using first-principles calculations within the density functional theory (DFT). Finite displacement method is used to calculate the phonon vibrational spectra and phonon density of states. The vibrational modes at the Gamma point are analyzed by using group theory. The temperature and pressure dependence of its thermal quantities such as the thermal expansion, the heat capacity at constant volume, the Gibbs energy and entropy are obtained based on the quasi-harmonic approximation (QHA). Our results show that both the thermal expansion coefficient α and the heat capacity CV increase with T3 at low temperatures and gradually turn almost linear as the temperature increases. It is found that the entropy is sensitive to the temperature while the Gibbs free energy is more sensitive to the pressure change.  相似文献   

15.
We used density functional theory (DFT) to study the structural, elastic, electronic, and lattice dynamical properties of tetragonal BiCoO3 applying the “norm-conserving” pseudopotentials within the local spin density approximation (LSDA). The calculated equilibrium lattice parameters and atomic displacements are in agreement with the available experimental and theoretical results. Moreover, the structural stability of tetragonal BiCoO3 were confirmed by the calculated elastic constants. In addition, the elastic properties of polycrystalline aggregates including bulk, shear and Young's moduli, and Poisson's ratio are also determined. The electronic band structure, total and partial density of states (DOS and PDOS) with ferromagnetic spin configuration are obtained. The results show that tetragonal BiCoO3 has an indirect band gap with both up- and down-spin configurations and its bonding behavior is of covalent nature. We compute Born effective charge (BEC) which is found to be quite anisotropic of Bi, Co and O atoms. The infrared and Raman active phonon mode frequencies at the Г point are found. The phonon dispersion curves exhibit imaginary frequencies which lead from the high-symmetry tetragonal phase to low-symmetry rhombohedral phase in BiCoO3. The six independent elastic constants, including bulk, shear and Young's moduli, and Poisson's ratio, complete BEC tensor and phonon dispersion relations in tetragonal BiCoO3 are predicted for the first time. Results of the calculations are compared with the existing experimental and theoretical data.  相似文献   

16.
A comprehensive first principle study of thermodynamic properties of MgN is reported within the density functional theory scheme. The ground state properties such as lattice constant, Bulk modulus etc. of MgN in rock-salt (RS) phase have been determined. The thermodynamical properties have been analyzed in the light of phonon density of states of MgN and its constituent atoms. The variation of lattice-specific heat with temperature obeys the classical Dulong–Petit’s law at high temperature while at low temperature it obeys Debye T 3 law. The phonon spectrum shows the presence of all positive phonons and zero phonon density of states at zero energy confirming a dynamically stabilized structure of MgN in RS phase.  相似文献   

17.
A multimode Holstein Hamiltonian is used to describe optical excitations in quaterthiophene pinwheel aggregates. The Hamiltonian includes the coupling of excitons originating from the 1A(g)-->1B(u) electronic transition to phonons originating from the five intramolecular vibrational modes known from oligothiophene solution absorption/emission spectroscopy. The resulting eigenstates with lowest energy are best described as hybrid polaron phonons. The polarons are formed by coupling excitons with the higher frequency (688, 1235, and 1551 cm(-1)) vibrational modes, while the (optical) phonons arise from the lower frequency (161 and 333 cm(-1)) modes. The polaron phonons are responsible for the fine structure defining the A(1) band in the low-energy region of the absorption spectrum, ranging from the band origin to approximately 1500 cm(-1) beyond. The calculated A(1) band of quaterthiophene aggregates agrees favorably with that observed from thin films.  相似文献   

18.
The vibrational properties of polymers adsorbed on surfaces are investigated within the frame of two simple models. First the surface is modelled as a one-dimensional infinite harmonic chain. Polymeric “ molecules ” are represented as harmonic chains of finite length. The coupling between the polymers and the surface is treated within the frame of the Interface Response Theory. Upon adsorption of polymers, resonant vibrational modes appear as well defined peaks in the variation of the density of states of the system. The effect of the interaction between adsorbed polymers via phonons is investigated and shown to lead to antiresonances in the spectral density of states and the formation of gaps in the density of states as the surface coverage is increased. A second more realistic model is introduced where the same finite harmonic chains (polymers) are grafted on a two dimensional [001] surface cut through a cubic harmonic crystal. Again the variation in density of states exhibits resonant modes between the polymers and the substrate. However, in this case, the interaction between polymers is short range. Adsorption of a film of polymers produces resonant modes which remain well-defined features within the substrate bulk band.  相似文献   

19.
将选态速度常数的计算推广到任意指定反应物、过渡态的振动激发态.用此法计算了H+H_2(v)及其同位素经不同振动激发过渡态时的速度常数,发现弯曲振动模激发所得结果与实验值更符合,并且在给定能量下,过渡态的弯曲振动模激发比其对称伸缩模激发更有利于反应进行.  相似文献   

20.
Theoretical calculations have been applied to design novel synthetic polymers which show metallic conductivity without doping. Some selected highly conjugated structures were calculated using a HUCKELMO method extended by introducing elastic sigma bonds. A group of highly conjugated aromatic ladder polymers is promising in this context. Another interesting group consists of laddered heteroaromatic structures in which carbon atoms are replaced by nitrogen. Ionization potentials, electron affinities, band widths, band gaps as well as oxidation and reduction potentials were calculated. Small, band gaps were obtained for polyacene, polyperinaphthalene and polypyridinopyridine. The values are in good aggreement with that obtained on the basis of the VEH method. This paper reports also some efforts to prepare polyacene, polyperinaphthalene and polypyridinopyridine, and to investigate their electronic properties. Concerning their electrochemical properties high specific capacities and good electrochemical stability has been found in aprotic lithium cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号