首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pb1−XLaXTiO3 thin films, (X=0.0; 13 and 0.27 mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si (1 1 1), Si (1 0 0) and glass substrates by spin coating, and annealed in the 200-300°C range in an O2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration.  相似文献   

2.
Room-temperature photoluminescence (PL) was observed in undoped and 2 mol % Cr-, Al- and Y-doped amorphous SrTiO3 thin films. Doping increased the PL, and in the case of Cr significantly reduced the associated PL wavelength. The optical bandgaps, calculated by means of UV–vis absorption spectra, increased with crystallinity and decreased with the doping level. It was considered that yttrium and aluminum substituted Sr2+, whereas chromium replaced Ti4+. It is believed that luminescence centers are oxygen-deficient BO6 complexes, or the same centers with some other defects, such as oxygen or strontium vacancies, or BO6 complexes with some other defects placed in their neighborhood. The character of excitation and the competition for negatively charged non-bridging oxygen (NBO) among numerous types of BO6 defect complexes in doped SrTiO3 results in various broadband luminescence peak positions. The results herein reported are an indicative that amorphous titanates are sensitive to doping, which is important for the control of the electro-optic properties of these materials. The probable incorporation of Cr into the Ti site suggests that the existence of a double network former can lead to materials displaying a more intense photoluminescence. Received: 20 November 2001 / Accepted: 22 November 2001 / Published online: 27 March 2002  相似文献   

3.
Neodymium (III) oxide nanocrystal/titania/organically-modified silane (ormosil) composite thin films have been prepared using a chemical approach consisting of a combination of inverse microemulsion and sol-gel techniques at low temperature. Transmission electron microscopy shows that the neodymium (III) oxide nanoparticles have a needle-like nanocrystal structure. A strong room temperature emission at 1064 nm, corresponding to the 4 F 3/2?4 I 11/2 transition, has been observed as a function of the heat treatment temperature used for the production of the composite thin films. In addition to this emission, two other main emissions at 890 nm and at 1336 nm have also been observed. In particular, there was a clear shoulder peak at 1145 nm, probably be due to the host matrix, which was observed in all the measured samples and this shoulder peak gave a maximum intensity after heat treatment at 300 °C. Received: 6 September 2000 / Accepted: 15 November 2000 / Published online: 20 June 2001  相似文献   

4.
We discuss the nature of visible photoluminescence at room temperature in amorphous strontium titanate in the light of the results of a recent experimental and quantum mechanical theoretical study. Our calculation of the electronic structure involves the use of first-principles molecular calculations to simulate the variation of the electronic structure in the strontium titanate crystalline phase, which is known to have a direct band gap, and we also make an in-depth examination of amorphous strontium titanate. The results of our simulations of amorphous strontium titanate indicate that the formation of five-fold coordination in the amorphous system may introduce delocalized electronic levels in the highest occupied molecular orbital and the lowest unoccupied molecular orbital. These delocalized electronic levels are ascribed to the formation of a tail in the absorbance-spectrum curve. Optical absorption measurements experimentally showed the presence of a tail. The results are interpreted by the nature of these exponential optical edges and tails associated with defects promoted by the disordered structure of the amorphous material. We associate them with localized states in the band gap. Received: 15 January 2002 / Accepted: 7 August 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +55-16/2615-215, E-mail: derl@power.ufscar.br  相似文献   

5.
A novel approach for the development of photoluminescent material   总被引:1,自引:0,他引:1  
We report on several amorphous compounds based on different metal oxianions with intense photoluminescence at room temperature. These compounds were synthesised by a soft chemical process and deposited on Si (100) by a spin-coating technique. To select these different metal oxianions, a classic concept based on a metal oxide network former is used. We describe a minimum set of requirements to obtain an amorphous metal oxide with photoluminescence emission at room temperature. Received: 27 August 2001 / Accepted: 29 August 2001 / Published online: 20 December 2001  相似文献   

6.
Transients of the photoluminescence (1.54 μm) of Er3+ ions embedded in an amorphous silicon matrix excited with intensive laser pulses are simulated using a phenomenological model which takes into account both the defect-related excitation mechanism and stimulated optical transitions in the ions. The simulated transients are compared with the experimental ones observed in Er-doped amorphous silicon layers under pulsed laser excitation. The modeling and the experimental results demonstrate a possibility to realize a regime of superradiance in the system of Er3+ ions pumped via an electronic excitation of the amorphous matrix. Received: 7 August 2001 / Revised version: 1 November 2001 / Published online: 17 January 2002  相似文献   

7.
Pr3+‐doped Lu2Si2O7 (LPS:Pr) microcrystalline phosphor was prepared by the sol–gel method. We study the LPS:Pr luminescence properties under UV and X‐ray excitation within 80–500 K. The emission spectrum is dominated by fast 5d–4f band peaking at 261 nm having 16 ns decay time. By purely optical contactless methods we determine the energy barrier of 300 meV for thermal ionization of the Pr3+ 5d1 relaxed excited state in LPS host. The barrier is high enough to keep the room temperature quantum efficiency of the Pr3+ luminescence center close to unity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This work deals with the low-temperature preparation of optically active silica-based materials. Tb3+-doped silica monolithic gels were elaborated at 40 °C. Tb3+–SSA-doped SiO2–TiO2 thin films were deposited by an original sol–gel approach, the aerosol–gel process, and heat-treated at 150 °C. Organic complexation of terbium ions was used to improve the active properties of doped silica gels and thin-film samples. Spectroscopic characterisations are reported for these samples. Photoluminescence increase by a factor two was observed for complexation by sulphosalicylic acid. Received: 16 May 2001 / Revised version: 31 August 2001 / Published online: 23 October 2001  相似文献   

9.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

10.
Visible room-temperature luminescence of Anisotropically Chemically Etched (ACE) silicon under spontaneous chemical surface modification in HNO3:HF solution is reported. The material is investigated by SEM, AES, IR transmission and Raman scattering methods.  相似文献   

11.
The photoluminescence (PL) properties of high quality ZnO thin films grown on Si (1 0 0) substrates using spin coating technique are investigated as a function of temperature in the range 10-300 K. The PL spectra shows dominant donor bound excitonic emission along with free exciton related emission in the UV region. The corresponding activation energy of thermal quenching is found to be . The parameters that describe the temperature dependent red shift of the band-edge transition energy are evaluated using different models. The broadening of the PL peak due to increase in temperature is mainly attributed to the exciton-LO phonon coupling.  相似文献   

12.
Photoluminescence in anatase titanium dioxide nanocrystals   总被引:7,自引:0,他引:7  
Titanium dioxide (TiO2) nanocrystals were prepared by a hydrolysis process of tetrabutyl titanate. X-ray diffraction and Raman scattering showed that the as-prepared TiO2 nanocrystals have anatase structure of TiO2, and that the monophase anatase nanocrystals can be achieved through a series of annealing treatments below 650 °C. We measured photoluminescence (PL) spectra of the TiO2 nanocrystals. Under 2.41–2.71 eV laser irradiation, the TiO2 nanocrystals displayed strong visible light emission with maxima of 2.15–2.29 eV even at excitation power as low as 0.06 W/cm2. To identify the PL mechanism in the TiO2 nanocrystals, the dependences of the PL intensity on excitation power and irradiation time were investigated. The experimental results indicated that the radiative recombination is mediated by localized levels related to surface defects residing in TiO2 nanocrystallites. Received: 7 April 1999 / Revised version: 23 August 1999 / Published online: 30 November 1999  相似文献   

13.
SiO2/TiO2/γ-glycidoxypropyltrimethoxysilane composite materials processed by the sol-gel technique were studied for optical waveguide applications. Waveguide films with thickness more than 1.7 μm were prepared on a silicon substrate by a single-coating process and low-temperature heat treatment from these high-titanium-content composite materials. Scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal gravimetric analysis (TGA), UV-visible spectroscopy (UV-VIS), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) have been used to characterize the waveguide films. TGA curves showed that organic compounds in the composite materials would decompose in the temperature range from 200 °C to 480 °C. SEM, AFM and UV-VIS results showed that a dense, porous-free, and high transparency in the visible range waveguide film could be obtained at a low heat-treatment temperature. It was also noted that the carbon content in the film with higher titanium content heated at high temperature was evidenced by XPS. The waveguide propagation loss properties of the composite material films were also investigated and showed a dependence on the titanium molar fraction. Received: 13 June 2000 / Accepted: 21 June 2000 / Published online: 20 September 2000  相似文献   

14.
4,4-dibromobiphenyl nanocrystals with different sizes in the range from 20 nm to 300 nm were prepared by the reprecipitation method. It was found that their absorption peaks experienced a red shift while the size of the nanocrystals increased. Through analyzing these spectra of the nanocrystals with different sizes, it is suggested that this size-dependent optical property is contributed by two factors, the size effect and the J-aggregate formation. Received: 28 August 2000 / Accepted: 2 March 2001 / Published online: 23 May 2001  相似文献   

15.
We report on germania/organically modified silane (ormosil) hybrid materials produced by the sol–gel technique for photonic applications. Acid-catalyzed solutions of γ-glycidoxypropyltrimethoxysilane mixed with germanium isopropoxide have been used as precursors for the hybrid materials. Planar waveguide films with a thickness of about 2 μm have been prepared by a single spin-coating process and low-temperature heat treatment from these high germanium content hybrid materials. Atomic force microscopy, thermal gravimetric analysis, UV–visible spectroscopy, and Fourier-transform infrared spectroscopy have been used to investigate the optical and structural properties of the films. The results have indicated that a dense, low absorption, and high transparency (in the visible range) waveguide film could be achieved at a low temperature. A strong UV-absorption region at short wavelengths ∼200 nm, accompanied by a shoulder peaked at ∼240 nm, has been noticed due to the neutral oxygen monovacancy defects. The propagation mode and loss properties of the planar waveguide films have also been investigated by using a prism-coupling technique. Received: 5 November 2002 / Revised version: 27 December 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +65-67909081, E-mail: ewxque@ntu.edu.sg  相似文献   

16.
Luminescence properties from erbium (III) oxide nanocrystals dispersed in titania/organically modified silane composite thin films were studied. Erbium oxide nanocrystals were prepared by an inverse microemulsion technique. A strong room-temperature photoluminescence was observed at 1.531 μm, with the full width at half maximum (FWHM) of 22 nm due to intra-atomic transitions between 4 I 13/2 and 4 I 15/2 levels in the erbium (III) ion. The shape, peak position, and FWHM of the photoluminescence signals from the composite thin films were quite comparable to those prepared by other methods. The photoluminescence peak of the composite thin films showed a maximum intensity at the heat-treatment temperature of 300 °C. A room-temperature green up-conversion emission at 543 nm (4 S 3/2?4 I 15/2) was observed for the composite thin films with different heat-treatment temperatures upon excitation at 993 nm. The up-conversion emission mechanism was explained by means of an energy-level diagram and the lifetime of the visible up-conversion emission was measured. Received: 10 July 2000 / Accepted: 11 July 2000 / Published online: 5 October 2000  相似文献   

17.
Two bands in the photoluminescence excitation spectra have been studied for the red, blue, and IR emission of oxidized porous silicon (PS) and PS with Er3+- and Yb3+-containing gadolinium oxychloride complex (PS:Er,Yb), introduced by thermal diffusion. These two spectral bands were shown to reflect contributions of two different mechanisms of excitation-emission processes. The UV band for the IR emission of PS:Er,Yb rose sharply at about 290 nm and was explained by the direct photoemission of carriers from the valence band of Si crystallites into the conduction band of the oxide shell. The second band was found to be common for the red and blue emission and assosiated with the carriers photoexcitation inside the Si crystallites. Lifetimes for both bands were measured and the structure of the blue emission from PS:Er,Yb with peaks at 416, 440, 466, and 500 nm from PS:Er,Yb was observed.  相似文献   

18.
The green emission intensity of ZnGa2O4:Ge4+, Li+, Mn2+ excited by the vacuum ultraviolet line of 147 nm reaches 70% of commercial green Zn2SiO4:Mn2+. The vacuum ultraviolet excitation spectra consist of four peaks. In a plasma display test bed filled with Ar and Ne plasma discharged by a radio-frequency generator of 13.6 MHz, ZnGa2O4:Ge4+, Li+, Mn2+ and commercial Zn2SiO4:Mn2+ phosphor screens show a linear increase in luminance with increasing self bias voltages. Increasing gas pressures cause the luminance to increase. Also, on increasing the self bias voltages and the gas pressures, the current densities of ZnGa2O4:Ge4+, Li+, Mn2+ phosphor screens are increased; this is the same behavior as that of the commercial phosphor.  相似文献   

19.
Micro-photoluminescence and micro-Raman studies have been performed in the silicon-hydrogen system, near the onset of microcrystallinity, during the transition from amorphous-like to microcrystalline-like phase. Amorphous-like Si:H films before the onset of microcrystallization, as determined by a micro-Raman probe, exhibit a microcrystalline-like photoluminescence (PL) band, which is a doublet within the 1.0-1.2 eV energy band. These two satellite components exhibit two different natures of energy shifts with variation of either excitation intensity or temperature; however, both attribute to the germinate recombination of carriers. The ultimate line shape is determined by the low-energy component, because of its faster quenching with temperature. Two different characteristic temperatures of exponential band-tail states are obtained, contributing tail widths of 22 and 17 meV at lower and higher temperature regimes, respectively, across 200 K, as calculated in terms of the carrier thermalization model. PL-spectroscopy may offer a new means of diagnostics for Si:H network before the onset of microcrystallinity.  相似文献   

20.
Luminescent SiO2 films containing Ge nanocrystals are fabricated by using Ge ion implantation, and metal–oxide–semiconductor structures employing these films as the active layers show yellow electroluminescence (EL) under both forward and reverse biases. The EL spectra are strongly dependent on the applied voltage, but slightly on the mean size of Ge nanocrystals. When the forward bias increases towards 30 V, the EL spectral peak shifts from 590 nm to 485 nm. It is assumed that the EL originates from the recombination of injected electrons and holes in Ge nanocrystals near the Si/SiO2 interface, or through luminescent centers in the SiO2 matrix near the SiO2/metal interface. The mismatch of the injection amounts between holes and electrons results in the low EL efficiency. Received: 28 February 2000 / Accepted: 28 March 2000 / Published online: 5 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号